In recent decades, the production of H from biomass, waste plastics, and their mixtures has attracted increasing attention in the literature in order to overcome the environmental problems associated with global warming and CO emissions caused by conventional H production processes. In this regard, the strategy based on pyrolysis and in-line catalytic reforming allows for obtaining high H production from a wide variety of feedstocks. In addition, it provides several advantages compared to other thermochemical routes such as steam gasification, making it suitable for its further industrial implementation. This review analyzes the fundamental aspects involving the process of pyrolysis-reforming of biomass and waste plastics. However, the optimum design of transition metal based reforming catalysts is the bottleneck in the development of the process and final H production. Accordingly, this review focuses especially on the influence the catalytic materials (support, promoters, and active phase), synthesis methods, and pyrolysis-reforming conditions have on the process performance. The results reported in the literature for the steam reforming of the volatiles derived from biomass, plastic wastes, and biomass/plastics mixtures on different metal based catalysts have been compared and analyzed in terms of H production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8573824 | PMC |
http://dx.doi.org/10.1021/acs.energyfuels.1c01666 | DOI Listing |
Front Biosci (Elite Ed)
December 2024
Environmental Sciences, Faculty of Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58102, USA.
A rise in population and societal changes have increased pressure on resources required to meet the growing demand for food and changing dietary preferences. The increasing demand for animal protein is concerning and raises questions regarding sustainability due to its environmental impact. Subsequently, scientists seek alternative proteins, such as microbial proteins (MPs), as an environmentally friendly choice.
View Article and Find Full Text PDFiScience
December 2024
Institute of Environment and Sustainable Development (IESD), Banaras Hindu University, Varanasi, UP, India.
Arsenic (As) is a non-essential carcinogenic metalloid and an issue of concern for rice crops. This study investigated the effects of sulfur-loaded tea waste biochar (TWB) due to modification with sodium sulfide (SSTWB) or thiourea (TUTWB) on As stress and accumulation in rice plants. The results showed that sulfur-modified TWB improved plant morphology compared to plants grown in As-contaminated soil alone.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Guangxi Colleges and Universities Key Laboratory of surface and interface electrochemistry, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, Guilin University of Technology, Guilin 541004, China. Electronic address:
With increasing awareness of environmental protection, additional attention has been given to environmentally friendly metal anticorrosion research. In this paper, the green organic corrosion inhibitor sodium lignosulfonate (SLS) was extracted from bagasse waste, and a Ce-MOF@SLS smart anticorrosive film containing the inhibitor was prepared on the surface of an aluminum alloy by in situ electrodeposition. The material was characterized by SEM, EDS, FT-IR, XRD and XPS, and its corrosion resistance was tested with EIS and neutral salt spray tests.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, Uttar Pradesh, India.
The aim of the current investigation is to explore the novel application of pumpkin, papaya, and orange peels as growth substrates for microalgae cultivation, with the overarching goal of advancing a sustainable "Agro to Agro" biorefinery paradigm. The research evaluates the integration of waste management practices into microalgal production, optimizing growth parameters to maximize output. Optimal concentrations of 2.
View Article and Find Full Text PDFJ Biotechnol
December 2024
Laboratory of Electrochemistry and Nanotechnology, Institute of Technology and Research (ITP), Aracaju, Sergipe, Brazil; Process Engineering Graduate Program (PEP), Tiradentes University, Aracaju, Sergipe, Brazil.
Efficiently managing agricultural waste while innovating to derive value-added products is a significant challenge in the 21 century. In recent decades, these by-products have been increasingly explored as alternative sources for materials such as biosilica. Biosilica is renowned for its high surface area, biocompatibility, chemical stability, and modifiable surface, which makes it suitable for various applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!