DPP promotes odontogenic differentiation of DPSCs through NF-κB signaling.

Sci Rep

Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois at Chicago, Chicago, IL, 60612, USA.

Published: November 2021

Dentin phosphophoryn synthesized and processed predominantly by the odontoblasts, functions as both structural and signaling protein. Mechanistic studies revealed that DPP stimulation of DPSCs positively impacted the differentiation of DPSCs into functional odontoblasts. Results show that NF-κB signaling and transcriptional activation of genes involved in odontoblast differentiation were influenced by DPP signaling. Specifically, RelA/p65 subunit of NF-κB was identified as being responsible for the initiation of the differentiation cascade. Confocal imaging demonstrated the nuclear translocation of p65 with DPP stimulation. Moreover, direct binding of nuclear NF-κB p65 subunit to the promoter elements of Runx2, Osx, OCN, MMP1, MMP3, BMP4 and PTX3 were identified by ChIP analysis. Pharmacological inhibition of the NF-κB pathway using TPCA-1, a selective inhibitor of IKK-2 and JSH-23, an inhibitor that prevents nuclear translocation and DNA binding of p65 showed impairment in the differentiation process. Functional studies using Alizarin-Red staining showed robust mineral deposits with DPP stimulation and sparse deposition with defective odontoblast differentiation in the presence of inhibitors. In vivo expression of NF-κB targets such as OSX, OCN, PTX3 and p65 in odontoblasts and dental pulp cells from DSPP null mouse was lower when compared with the wild-type. Overall, the results suggest an important role for DPP-mediated NF-κB activation in the transcriptional regulation of early odontogenic markers that promote differentiation of DPSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586344PMC
http://dx.doi.org/10.1038/s41598-021-01359-3DOI Listing

Publication Analysis

Top Keywords

differentiation dpscs
12
dpp stimulation
12
nf-κb signaling
8
odontoblast differentiation
8
nuclear translocation
8
osx ocn
8
differentiation
7
nf-κb
7
dpp
5
dpp promotes
4

Similar Publications

Dental inflammatory diseases remain a challenging clinical issue, whose causes and development are still not fully understood. During dental caries, bacteria penetrate the tooth pulp, causing pulpitis. To prevent pulp necrosis, it is crucial to promote tissue repair by recruiting immune cells, such as macrophages, able to secrete signal molecules for the pulp microenvironment and thus to recruit dental pulp stem cells (DPSCs) in the damaged site.

View Article and Find Full Text PDF

: CI-RM6P has different binding sites with affinities for both M6P and IGF2, plays a role in the regulation of the TGF-β and IGF pathways that is important for controlling cell growth and differentiation. We hypothesize that previously synthesised derivative of M6P could be an alternative candidate for bone tissue regeneration in terms of higher binding affinity, stability in human serum, low cost and temporal delivery. : CH-M6P is synthesised based on previously described protocol; mesenchymal origin of isolated DPSCs was assessed by flow cytometry and AR staining prior to alkaline phosphatase (ALP) activity test, qPCR to evaluate differentiation specific marker expression, immunofluoresence, and SEM/EDS to evaluate organic and inorganic matrix formation; and rat aortic ring model to evaluate angiogenic effect of molecule.

View Article and Find Full Text PDF

Odontogenic exosomes simulating the developmental microenvironment promote complete regeneration of pulp-dentin complex in vivo.

J Adv Res

January 2025

Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, People's Republic of China. Electronic address:

Introduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.

Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.

View Article and Find Full Text PDF

Noggin Combined With Human Dental Pulp Stem Cells to Promote Skeletal Muscle Regeneration.

Stem Cells Int

December 2024

Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China.

Article Synopsis
  • Dental pulp stem cells (DPSCs) show promise for muscle injury repair, but their ability to differentiate into muscle cells is currently limited.
  • Treating DPSCs with Noggin, which inhibits bone morphogenetic protein (BMP) signals, enhances myogenic differentiation, increases myogenic markers, and generates satellite-like cells, improving muscle regeneration.
  • Implanting Noggin-treated DPSCs in a mouse model of muscle loss resulted in significant reductions in defect size and scar tissue, indicating that BMP/Smad signaling regulation by Noggin effectively promotes muscle repair.
View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to explore mitochondrial transfer in dental mesenchymal stem cells (MSCs) and its impact on their ability to differentiate into odontogenic cells.
  • Flow cytometry, immunostaining, and advanced imaging techniques were utilized to analyze the presence and significance of mitochondrial transfer in these cells, revealing its role in promoting odontogenic differentiation.
  • The research found evidence of mitochondrial transfer through structures called tunneling nanotubes (TNTs) and showed that inhibiting this transfer affected key differentiation markers and gene expression related to odontogenesis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!