The flower buds continue to develop during the whole winter in tree fruit species, which is affected by environmental factors and hormones. However, little is known about the molecular mechanism of flower development during dormancy phase of sweet cherry in response to light, temperature and ABA. Therefore, we identified two cold induced gene (CIG) PavCIG1 and PavCIG2 from sweet cherry, which were closely to PpCBF and PyDREB from Prunus persica and Prunus yedoensis by using phylogenetic analysis, suggesting conserved functions with these evolutionarily closer DREB subfamily genes. Subcellular localization analysis indicated that, PavCIG1 and PavCIG2 were both localized in the nucleus. The seasonal expression levels of PavCIG1 and PavCIG2 were higher at the stage of endodormancy in winter, and induced by low temperature. Ectopic expression of PavCIG1 and PavCIG2 resulted in a delayed flowering in Arabidopsis. Furthermore, PavCIG2 increased light-responsive gene PavHY5 transcriptional activity by binding to its promoter, meanwhile, PavHY5-mediated positive feedback regulated PavCIG2. Moreover, ABA-responsive protein PavABI5-like could also increase transcriptional activity of PavCIG and PavCIG2. In addition, PavCIG and PavCIG2 target gene PavCAL-like was involved in floral initiation, demonstrated by ectopic expression in Arabidopsis. These findings provide evidences to better understand the molecular mechanism of CIG-mediated flower development and dormancy in fruit species, including sweet cherry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2021.111061 | DOI Listing |
Plant Sci
December 2021
Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minhang, Shanghai 200240, China. Electronic address:
The flower buds continue to develop during the whole winter in tree fruit species, which is affected by environmental factors and hormones. However, little is known about the molecular mechanism of flower development during dormancy phase of sweet cherry in response to light, temperature and ABA. Therefore, we identified two cold induced gene (CIG) PavCIG1 and PavCIG2 from sweet cherry, which were closely to PpCBF and PyDREB from Prunus persica and Prunus yedoensis by using phylogenetic analysis, suggesting conserved functions with these evolutionarily closer DREB subfamily genes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!