A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: Attempt to read property "Count" on bool

Filename: helpers/my_audit_helper.php

Line Number: 3100

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiple instance convolutional neural network with modality-based attention and contextual multi-instance learning pooling layer for effective differentiation between borderline and malignant epithelial ovarian tumors. | LitMetric

Multiple instance convolutional neural network with modality-based attention and contextual multi-instance learning pooling layer for effective differentiation between borderline and malignant epithelial ovarian tumors.

Artif Intell Med

Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; Jinan Guoke Medical Engineering and Technology Development Co., Ltd., Jinan, Shandong 250109, China; Department of Radiology, Shanxi Province Cancer Hospital, Shanxi Medical University, Taiyuan, Shanxi 030013, China. Electronic address:

Published: November 2021

Malignant epithelial ovarian tumors (MEOTs) are the most lethal gynecologic malignancies, accounting for 90% of ovarian cancer cases. By contrast, borderline epithelial ovarian tumors (BEOTs) have low malignant potential and are generally associated with a good prognosis. Accurate preoperative differentiation between BEOTs and MEOTs is crucial for determining the appropriate surgical strategies and improving the postoperative quality of life. Multimodal magnetic resonance imaging (MRI) is an essential diagnostic tool. Although state-of-the-art artificial intelligence technologies such as convolutional neural networks can be used for automated diagnoses, their application have been limited owing to their high demand for graphics processing unit memory and hardware resources when dealing with large 3D volumetric data. In this study, we used multimodal MRI with a multiple instance learning (MIL) method to differentiate between BEOT and MEOT. We proposed the use of MAC-Net, a multiple instance convolutional neural network (MICNN) with modality-based attention (MA) and contextual MIL pooling layer (C-MPL). The MA module can learn from the decision-making patterns of clinicians to automatically perceive the importance of different MRI modalities and achieve multimodal MRI feature fusion based on their importance. The C-MPL module uses strong prior knowledge of tumor distribution as an important reference and assesses contextual information between adjacent images, thus achieving a more accurate prediction. The performance of MAC-Net is superior, with an area under the receiver operating characteristic curve of 0.878, surpassing that of several known MICNN approaches. Therefore, it can be used to assist clinical differentiation between BEOTs and MEOTs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.artmed.2021.102194DOI Listing

Publication Analysis

Top Keywords

multiple instance
12
convolutional neural
12
epithelial ovarian
12
ovarian tumors
12
instance convolutional
8
neural network
8
modality-based attention
8
attention contextual
8
pooling layer
8
malignant epithelial
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!