Integrated analyses of miRNA-mRNA expression profiles of ovaries reveal the crucial interaction networks that regulate the prolificacy of goats in the follicular phase.

BMC Genomics

Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.

Published: November 2021

Background: Litter size is an important index of mammalian prolificacy and is determined by the ovulation rate. The ovary is a crucial organ for mammalian reproduction and is associated with follicular development, maturation and ovulation. However, prolificacy is influenced by multiple factors, and its molecular regulation in the follicular phase remains unclear.

Methods: Ten female goats with no significant differences in age and weight were randomly selected and divided into either the high-yielding group (n = 5, HF) or the low-yielding group (n = 5, LF). Ovarian tissues were collected from goats in the follicular phase and used to construct mRNA and miRNA sequencing libraries to analyze transcriptomic variation between high- and low-yield Yunshang black goats. Furthermore, integrated analysis of the differentially expressed (DE) miRNA-mRNA pairs was performed based on their correlation. The STRING database was used to construct a PPI network of the DEGs. RT-qPCR was used to validate the results of the predicted miRNA-mRNA pairs. Luciferase analysis and CCK-8 assay were used to detect the function of the miRNA-mRNA pairs and the proliferation of goat granulosa cells (GCs).

Results: A total of 43,779 known transcripts, 23,067 novel transcripts, 424 known miRNAs and 656 novel miRNAs were identified by RNA-seq in the ovaries from both groups. Through correlation analysis of the miRNA and mRNA expression profiles, 263 negatively correlated miRNA-mRNA pairs were identified in the LF vs. HF comparison. Annotation analysis of the DE miRNA-mRNA pairs identified targets related to biological processes such as "estrogen receptor binding (GO:0030331)", "oogenesis (GO:0048477)", "ovulation cycle process (GO:0022602)" and "ovarian follicle development (GO:0001541)". Subsequently, five KEGG pathways (oocyte meiosis, progesterone-mediated oocyte maturation, GnRH signaling pathway, Notch signaling pathway and TGF-β signaling pathway) were identified in the interaction network related to follicular development, and a PPI network was also constructed. In the network, we found that CDK12, FAM91A1, PGS1, SERTM1, SPAG5, SYNE1, TMEM14A, WNT4, and CAMK2G were the key nodes, all of which were targets of the DE miRNAs. The PPI analysis showed that there was a clear interaction among the CAMK2G, SERTM1, TMEM14A, CDK12, SYNE1 and WNT4 genes. In addition, dual luciferase reporter and CCK-8 assays confirmed that miR-1271-3p suppressed the proliferation of GCs by inhibiting the expression of TXLNA.

Conclusions: These results increase the understanding of the molecular mechanisms underlying goat prolificacy. These results also provide a basis for studying interactions between genes and miRNAs, as well as the functions of the pathways in ovarian tissues involved in goat prolificacy in the follicular phase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8582148PMC
http://dx.doi.org/10.1186/s12864-021-08156-2DOI Listing

Publication Analysis

Top Keywords

mirna-mrna pairs
20
follicular phase
16
signaling pathway
12
expression profiles
8
goats follicular
8
follicular development
8
group n = 5
8
ovarian tissues
8
ppi network
8
pairs identified
8

Similar Publications

This study explores the role of LINC00839 and its potential interaction with the miR-195-5p/cyclin E1 (CCNE1) axis in oral squamous cell carcinoma (OSCC). Using The Cancer Genome Atlas, we analyzed lncRNA, miRNA, and mRNA sequencing data for OSCC. Different online tools were applied to detect lncRNA-related miRNAs and their target mRNAs, forming a lncRNA/miRNA/mRNA axis.

View Article and Find Full Text PDF

Dysregulated long non-coding RNA (lncRNA) expression is linked to various cancers and may be influenced by oncogenic Epstein-Barr virus (EBV) infection, a known and detectable risk factor in oral squamous cell carcinoma (OSCC) patients. However, research on the oncogenic role of EBV-induced lncRNAs in OSCC is limited. To identify lncRNA-associated EBV infection and OSCC carcinogenesis, the differential expression of RNA-seq datasets from paired normal adjacent and OSCC tissues, and microarray data from EBV-negative and EBV-positive SCC25 cells, were identified and selected, respectively, for interaction, functional analysis, and CCK-8 cell proliferation, wound healing, and invasion Transwell assays.

View Article and Find Full Text PDF

Comprehensive Analysis of circRNA-Related mRNAs as Prognostic Factors in Non-Smoking Women with Lung Adenocarcinoma.

Int J Gen Med

December 2024

Department of Respiratory Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People's Republic of China.

Background: Non-smoking women with lung adenocarcinoma(NSWLA) is a significant health problem globally; the carcinogenesis and prognostic signature remain poorly understood. Circular RNAs (circRNAs) are gradually implicated in cancer formation through sponging miRNAs to regulate mRNAs.

Methods: Tumor and paracancerous specimens from non-smoking women after lung adenocarcinoma surgery were collected for high-throughput sequencing of circRNA.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to investigate myocardial inflammation in patients with desmoplakin (DSP) cardiomyopathy using FDG PET/CT imaging and assess circulating inflammation biomarkers.
  • Ten DSP cardiomyopathy participants and four titin cardiomyopathy participants were recruited; no significant differences in key inflammation markers were found between the groups.
  • The results showed some non-specific myocardial FDG uptake in both groups but no overall differences, suggesting similar inflammation profiles in DSP and titin cardiomyopathies.
View Article and Find Full Text PDF

Transcriptome-wide identification and characterization of Toll pathway genes in Riptortus pedestris (Hemiptera: Alydidae).

Dev Comp Immunol

November 2024

Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, 300071, PR China. Electronic address:

The Toll pathway was first identified in Drosophila and plays an essential role in defense against infection by various pathogens. To date, various noncoding RNAs (ncRNAs) have been demonstrated to maintain immune homeostasis by regulating several target genes in the insect Toll pathway. However, the characterization and function of Toll pathway genes involved in the response to environmental changes at the posttranscriptional level associated with gut bacterial changes in Riptortus pedestris, which is a significant pest of soybeans, remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!