Effects of L-Theanine on Hepatic Ischemia-Reperfusion Injury in Rats.

Exp Clin Transplant

From the Karadeniz Technical University, Faculty of Medicine, Department of General Surgery, Farabi Hospital, Trabzon, Turkey.

Published: October 2021

AI Article Synopsis

  • The study aimed to explore the effects of L-theanine on liver injury caused by ischemia-reperfusion in rats, which is a condition where blood supply to the liver is temporarily cut off and then restored.
  • Thirty-two male Sprague Dawley rats were divided into four groups, some receiving L-theanine while others did not, to investigate changes in liver cell injury and function markers following induced ischemia-reperfusion.
  • The results indicated that L-theanine reduced liver damage and improved various biochemical markers associated with hepatic injury, suggesting its potential protective role, though further research is necessary to confirm its effects.

Article Abstract

Objectives: The effects of L-theanine on hepatic microcirculation during hepatic ischemia-reperfusion injury have not yet been investigated. The aim of this study was to investigate the influence of L-theanine on hepatic ischemia-reperfusion injury in rats.

Materials And Methods: Thirty-two male Sprague Dawley rats weighing 250 to 300 g were used. Rats were divided into 4 groups: sham + saline, sham + L-theanine, hepatic ischemia-reperfusion injury + saline, and hepatic ischemia-reperfusion injury + L-theanine. Hepatic ischemia-reperfusion injury in rats was induced by 60 minutes of 70% ischemia and 4 hours of reperfusion. The extent of hepatic cell injury, functional capillary density, hepatic functions, and changes in some enzyme markers in hepatic tissue were investigated in the 4 groups.

Results: The induction of hepatic ischemia-reperfusion injury resulted in significant increases in hepatic necrosis; serum activity of alanine aminotransferase, lactate dehydrogenase, gamma-glutamyltransferase, and tumor necrosis factor alpha; tissue activity of inducible nitric oxide synthase, myeloperoxidase, and malondialdehyde, and oxide glutathione; and H score for hypoxia-inducible factor 1-alpha in the liver. In the liver, there were significant reductions in reduced glutathione, ratio of reduced glutathione-to-oxide glutathione, and functional capillary density. The use of L-theanine improved these changes.

Conclusions: L-theanine demonstrated protective effects on hepatic injury after ischemia-reperfusion injury in rats. However, new studies are needed to confirm the preventive or reducing effects of L-theanine on hepatic ischemia-reperfusion injury.

Download full-text PDF

Source
http://dx.doi.org/10.6002/ect.2021.0290DOI Listing

Publication Analysis

Top Keywords

ischemia-reperfusion injury
36
hepatic ischemia-reperfusion
32
l-theanine hepatic
24
hepatic
14
effects l-theanine
12
injury rats
12
injury
11
ischemia-reperfusion
9
functional capillary
8
capillary density
8

Similar Publications

Mechanisms and Therapeutic Potential of Multiple Forms of Cell Death in Myocardial Ischemia-Reperfusion Injury.

Int J Mol Sci

December 2024

Centre for Heart Research, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia.

Programmed cell death, especially programmed necrosis such as necroptosis, ferroptosis, and pyroptosis, has attracted significant attention recently. Traditionally, necrosis was thought to occur accidentally without signaling pathways, but recent discoveries have revealed that molecular pathways regulate certain forms of necrosis, similar to apoptosis. Accumulating evidence indicates that programmed necrosis is involved in the development of various diseases, including myocardial ischemia-reperfusion injury (MIRI).

View Article and Find Full Text PDF

Ischemia-reperfusion (I/R) injury is a process in which impaired perfusion is restored by restoring blood flow and tissue recirculation. Nanomedicine uses cutting-edge technologies that emerge from interdisciplinary influences. In the literature, there are very few in vivo and in vitro studies on how cerium oxide (CeO) affects systemic anti-inflammatory response and inflammation.

View Article and Find Full Text PDF

Acute myocardial infarction (AMI) is a critical medical condition that requires immediate attention to minimise heart damage and improve survival rates. Early identification and prompt treatment are essential to save the patient's life. Currently, the treatment strategy focuses on restoring blood flow to the myocardium as quickly as possible.

View Article and Find Full Text PDF

: Exsanguination is a leading cause of preventable death in military and civilian settings due to extensive blood loss and hemorrhagic shock, which trigger systemic effects such as impaired tissue perfusion, hypoxia, inflammation, and multi-organ dysfunction. Standard resuscitation restores blood volume but fails to address critical aspects of hemorrhagic shock, including inflammation, coagulopathy, and reperfusion injury. To address these limitations, novel phospholipid nanoparticle (PNP)-based resuscitative fluids, VBI-S and VBI-1, were developed to modulate nitric oxide (NO) levels, improving hemodynamic stability, tissue oxygenation, and reducing inflammatory injury.

View Article and Find Full Text PDF

Background: The effects of anesthetic drugs on myocardial cells have been a subject of research for the last 50 years. The clinical benefits of halogenated agents, particularly sevoflurane, have been demonstrated in cardiac surgery patients. These benefits are due to the action of different enzymes and a variety of molecular pathways mediated by the action of small noncoding RNAs (sRNA) such as microRNAs (miRNAs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!