The Ubiquitin Interacting Motif-Like Domain of Met4 Selectively Binds K48 Polyubiquitin Chains.

Mol Cell Proteomics

Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, USA. Electronic address:

Published: January 2022

Protein ubiquitylation is an important posttranslational modification that governs most cellular processes. Signaling functions of ubiquitylation are very diverse and involve proteolytic as well as nonproteolytic events, such as localization, regulation of protein interactions, and control of protein activity. The intricacy of ubiquitin signaling is further complicated by several different polyubiquitin chain types that are likely recognized and interpreted by different protein readers. For example, K48-linked ubiquitin chains represent the most abundant chain topology and are the canonical degradation signals, but have been implicated in degradation-independent functions as well, likely requiring a variety of protein readers. Ubiquitin binding domains that interact with polyubiquitin chains are likely at the center of ubiquitin signal recognition and transmission, but their structure and selectivity are largely unexplored. Here we report identification and characterization of the ubiquitin interacting motif-like (UIML) domain of the yeast transcription factor Met4 as a strictly K48-polyubiquitin specific binding unit using methods such as biolayer interferometry (BLI), pull-down assays, and mass spectrometry. We further used the selective binding property to develop an affinity probe for purification of proteins modified with K48-linked polyubiquitin chains. The affinity probe has a K = 100 nM for K48 tetra-ubiquitin and shows no detectable interaction with either monoubiquitin or any other polyubiquitin chain configuration. Our results define a short strictly K48-linkage-dependent binding motif and present a new affinity reagent for the K48-polyubiquitin-modified proteome. Our findings benefit the ubiquitin field in analyses of the role of K48-linked polyubiquitylation and increase our understanding of chain topology selective ubiquitin chain recognition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8693465PMC
http://dx.doi.org/10.1016/j.mcpro.2021.100175DOI Listing

Publication Analysis

Top Keywords

polyubiquitin chains
12
ubiquitin
8
ubiquitin interacting
8
interacting motif-like
8
polyubiquitin chain
8
protein readers
8
chain topology
8
affinity probe
8
polyubiquitin
5
protein
5

Similar Publications

The effectiveness of state-of-the-art cross-linking strategies and mass spectrometry (MS) detection was explored in an important biological context, namely, the ubiquitin-proteasome system, which is responsible for most of the regulated protein degradation in eukaryotic cells. The locations of possible binding sites on the 19S proteasome regulatory particle for Lys linked polyubiquitin chains were examined using cross-linking strategies and MS based detection by comparing two types of cross-linkers: a (bis)-sulfosuccinimidyl suberate (BS) and diethyl suberothioimidate (DEST). The well-established BS-based strategy produced 328 cross-linked peptides; however, no ubiquitin-19S cross-links were observed.

View Article and Find Full Text PDF

Protein homeostasis is crucial for maintaining cardiomyocyte (CM) function. Disruption of proteostasis results in accumulation of protein aggregates causing cardiac pathologies such as hypertrophy, dilated cardiomyopathy (DCM), and heart failure. Here, we identify ubiquitin-specific peptidase 5 (USP5) as a critical determinant of protein quality control (PQC) in CM.

View Article and Find Full Text PDF

Macrocyclic Peptide-Based Dual-Sensor Platform for Linkage-Specific Visualization of Ubiquitin Chain Assembling in Live Cells.

Anal Chem

January 2025

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Intracellular monitoring of protein ubiquitination and differentiating polyubiquitin chain topology are crucial for understanding life processes and drug discovery, which is challenged by the high complexity of the ubiquitination process and a lack of molecular tools. Herein, a synthetic dual-sensor platform specific for K48-linked ubiquitin oligomers was tailored for visualization of polyubiquitin chain assembling in live biosystems. This is achieved using macrocyclic peptides as recognition motifs and a tetraphenylethylene derivative as an activatable reporter.

View Article and Find Full Text PDF

Ubiquitin-A structural perspective.

Mol Cell

January 2025

Ubiquitin Signalling Division, WEHI, Melbourne, VIC, Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia. Electronic address:

The modification of proteins and other biomolecules with the small protein ubiquitin has enthralled scientists from many disciplines for decades, creating a broad research field. Ubiquitin research is particularly rich in molecular and mechanistic understanding due to a plethora of (poly)ubiquitin structures alone and in complex with ubiquitin machineries. Furthermore, due to its favorable properties, ubiquitin serves as a model system for many biophysical and computational techniques.

View Article and Find Full Text PDF

ZFAND6 is a zinc finger protein that interacts with TNF receptor-associated factor 2 (TRAF2) and polyubiquitin chains and has been linked to tumor necrosis factor (TNF) signaling. Here, we report a previously undescribed function of ZFAND6 in maintaining mitochondrial homeostasis by promoting mitophagy. Deletion of ZFAND6 in bone marrow-derived macrophages (BMDMs) upregulates reactive oxygen species (ROS) and the accumulation of damaged mitochondria due to impaired mitophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!