Cholesterol-Mediated Clustering of the HIV Fusion Protein gp41 in Lipid Bilayers.

J Mol Biol

Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States. Electronic address: https://twitter.com/MeiHongLab.

Published: January 2022

The envelope glycoprotein (Env) of the human immunodeficient virus (HIV-1) is known to cluster on the viral membrane surface to attach to target cells and cause membrane fusion for HIV-1 infection. However, the molecular structural mechanisms that drive Env clustering remain opaque. Here, we use solid-state NMR spectroscopy and molecular dynamics (MD) simulations to investigate nanometer-scale clustering of the membrane-proximal external region (MPER) and transmembrane domain (TMD) of gp41, the fusion protein component of Env. Using F solid-state NMR experiments of mixed fluorinated peptides, we show that MPER-TMD trimers form clusters with interdigitated MPER helices in cholesterol-containing membranes. Inter-trimer F-F cross peaks, which are indicative of spatial contacts within ∼2 nm, are observed in cholesterol-rich virus-mimetic membranes but are suppressed in cholesterol-free model membranes. Water-peptide and lipid-peptide cross peaks in 2D H-F correlation spectra indicate that the MPER is well embedded in model phosphocholine membranes but is more exposed to the surface of the virus-mimetic membrane. These experimental results are reproduced in coarse-grained and atomistic molecular dynamics simulations, which suggest that the effects of cholesterol on gp41 clustering is likely via indirect modulation of the MPER orientation. Cholesterol binding to the helix-turn-helix region of the MPER-TMD causes a parallel orientation of the MPER with the membrane surface, thus allowing MPERs of neighboring trimers to interact with each other to cause clustering. These solid-state NMR data and molecular dynamics simulations suggest that MPER and cholesterol cooperatively govern the clustering of gp41 trimers during virus-cell membrane fusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8832541PMC
http://dx.doi.org/10.1016/j.jmb.2021.167345DOI Listing

Publication Analysis

Top Keywords

solid-state nmr
12
molecular dynamics
12
dynamics simulations
12
fusion protein
8
membrane surface
8
membrane fusion
8
cross peaks
8
mper
6
membrane
5
clustering
5

Similar Publications

Manipulating Toughness and Microstructure in Polyelectrolyte Complex Hydrogels with Competitive Surfactant Micelles.

Langmuir

December 2024

Key Laboratory of Functional Polymer Materials of Ministry of Education and College of Chemistry, Nankai University, Tianjin 300071, China.

Polyelectrolyte complex (PEC) hydrogels provide a promising strategy to develop a class of physically cross-linked networks characterized by exceptional toughness and self-healing properties. However, the precise control of the microstructure and the enhancement of mechanical properties still pose challenges in the field of PEC hydrogels. Herein, we propose a strategy to manipulate the structure of PEC with competitively charged surfactant micelles, leveraging the spatially confined surface charge and excluded volume effects to overcome coacervation issues associated with the PEC, thus achieving a simple one-step preparation of macroscopically uniform and tough PEC hydrogels.

View Article and Find Full Text PDF

Mechanism of improved cellulase production by Trichoderma reesei in water-supply solid-state fermentation.

Bioresour Technol

December 2024

Sanya Institute of Nanjing Agricultural University, Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

High production cost of cellulases limits its commercial application on lignocellulose. Solid-state fermentation (SSF) has special advantages of water and energy conservation, however, the lack of free water and water loss during fermentation limits its application. In this paper, a constructed water-supply SSF was used to improve carboxymethyl cellulose activity and filter paper activity of 1.

View Article and Find Full Text PDF

Homonuclear decoupled INADEQUATE NMR methods with improved sensitivity and resolution in solid-state NMR.

J Magn Reson

December 2024

Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France. Electronic address:

The two-dimensional (2D) refocused INADEQUATE NMR experiment, which correlates double-quantum (DQ) and single-quantum (SQ) coherences, is widely used to probe the chemical connectivities in solids. Nevertheless, the multiplets along the F dimension reduce the resolution and sensitivity of this experiment. The Composite-Refocusing (CR) technique with two excitation pulses has been proposed to suppress these multiplets in 2D INADEQUATE spectra of liquids.

View Article and Find Full Text PDF

The present work reports on the preparation, characterization, and evaluation of a set of novel triphenyl-modified silica-based stationary phases without and with embedded ion-exchange sites for mixed-mode liquid chromatography. The three synthesized triphenyl phases differed in additionally incorporated ion-exchange sites. In one embodiment, allyltriphenylsilane was bonded to thiol-modified silica by thiol-ene click reaction, leading to particles with no ion-exchange sites.

View Article and Find Full Text PDF

C-H Bond Activation by Sulfated Zirconium Oxide is Mediated by a Sulfur-Centered Lewis Superacid.

Angew Chem Int Ed Engl

December 2024

University of California, Riverside, Chemistry, 501 Big Springs Rd, 92521, Riverside, UNITED STATES OF AMERICA.

Sulfated zirconium oxide (SZO) catalyzes the hydrogenolysis of isotactic polypropylene (iPP, Mn = 13.3 kDa, Đ = 2.4, = 94 %) or high-density polyethylene (HDPE, Mn = 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!