Per- and polyfluoroalkyl substances (PFAS) are contaminants of global concern due to their persistence and associated negative health effects. Considerable attention has been given to monitoring PFAS in the aquatic environment, however, few investigations have done so using freshwater benthic macroinvertebrates (BMIs). As these bottom-dwelling animals are known to bioconcentrate exogenous pollutants to a high degree, studying their PFAS levels may provide a more integrated view of PFAS contamination in the aquatic environment. In this study, BMIs, sediment, and surface water were collected from two streams in the Hudson River Watershed (one historically-impacted by PFAS) and analyzed for 44 PFAS using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Orbitrap high-resolution mass spectrometry (HRMS) was used to confirm the identities of quantitated analytes. Across all matrices, 17 analytes were detected with PFOA dominating in surface water and PFOS in sediment/BMIs. PFOS bioaccumulation factors (BAFs) were approximately one order of magnitude higher than those of PFOA and ranged from 857 to 5151 L kg across different BMI taxa. While PFAS concentrations in surface water and sediment were not excessively high, elevated levels were still measured in most BMI taxa. This observation suggests that the extent of PFAS contamination in a local system may be severely underestimated if only surface water and sediment are used for monitoring. Moreover, these findings have relevance for human exposure assessment considering BMIs are the primary food source of many fish.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2021.132830 | DOI Listing |
Nano Lett
January 2025
Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
Developing sustainable structural materials to replace traditional carbon-intensive structural materials fundamentally reshapes the concept of circular development. Herein, we propose an interface engineering strategy that utilizes water as a liquid medium to replace the residual air within natural wood. This approach minimizes the absorption of water-based softening agents by microcapillary channels of wood, enabling the controlled softening of the cell walls.
View Article and Find Full Text PDFCrit Rev Anal Chem
January 2025
Department of Chemistry, University of Delhi, New Delhi, India.
Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
January 2025
College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241000, People's Republic of China.
A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China.
Since its discovery, carbon quantum dots (CDs) have been widely applied in cell imaging, drug delivery, biosensing, and photocatalysis due to their excellent water solubility, chemical stability, fluorescence stability biocompatibility, low toxicity, and preparation cost. However, the low fluorescence yield and poor surface structure limit the application of CDs. Heteroatom doping is considered an ideal method to improve CDs' optical and electrical properties.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical Engineering, Zhejiang University of Technology, No.18, Chaowang Road, Hangzhou, 310014, Zhejiang Province, China.
To observe the chemical mechanical polishing (CMP) process at the atomic scale, reactive force field molecular dynamics (ReaxFF-MD) was employed to simulate the polishing of 6 H-SiC under three conditions: dry, pure water, and HO solution. This study examined the reactants on the surface of 6 H-SiC during the reaction in the HO solution, along with the dissociation and adsorption processes of HO and water molecules. The mechanisms for atom removal during the CMP process were elucidated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!