Catalytic conversion of alcohols underlies many commodity and fine chemical syntheses, but a complete mechanistic understanding is lacking. We examined catalytic oxidative conversion of methanol near atmospheric pressure using operando small-aperture molecular beam time-of-flight mass spectrometry, interrogating the gas phase 500 μm above Pd-based catalyst surfaces. In addition to a variety of stable C species, we detected methoxymethanol (CHOCHOH)─a rarely observed and reactive C oxygenate that has been proposed to be a critical intermediate in methyl formate production. Methoxymethanol is observed above Pd, AuPd alloys, and oxide-supported Pd (common methanol oxidation catalysts). Experiments establish temperature and reactant feed ratio dependences of methoxymethanol generation, and calculations using density functional theory are used to examine the energetics of its likely formation pathway. These results suggest that future development of catalysts and microkinetic models for methanol oxidation should be augmented and constrained to accommodate the formation, desorption, adsorption, and surface reactions involving methoxymethanol.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c03381DOI Listing

Publication Analysis

Top Keywords

methanol oxidation
12
methoxymethanol
5
near-surface gas-phase
4
gas-phase methoxymethanol
4
methoxymethanol generated
4
methanol
4
generated methanol
4
oxidation pd-based
4
pd-based catalysts
4
catalysts catalytic
4

Similar Publications

Astragalus tokatensis is a local endemic species and no study exists on this species. In this study, hexane, dichloromethane, methanol and water extracts were obtained from the parts of root, leaf and flower of A. tokatensis.

View Article and Find Full Text PDF

Partial oxidation of methane (POM) is achieved by forming air-methane microbubbles in saltwater to which an alternating electric field is applied using a copper oxide foam electrode. The solubility of methane is increased by putting it in contact with water containing dissolved KCl or NaCl (3%). Being fully dispersed as microbubbles (20-40 µm in diameter), methane reacts more fully with hydroxyl radicals (OH·) at the gas-water interface.

View Article and Find Full Text PDF

Mechanistic Understanding of Dissociated Hydrogen in Cu/CeO-Catalyzed Methanol Synthesis.

ACS Appl Mater Interfaces

January 2025

School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China.

The hydrogen dissociation and spillover mechanism on oxide-supported Cu catalysts play a pivotal role in the hydrogenation of carbon dioxide to methanol. This study investigates the hydrogen spillover mechanism on Cu/CeO catalysts using spectral characterization under high-pressure reaction conditions and density functional theory (DFT) simulations. The research confirms that the Cu sites serve as the initial dissociation points for the hydrogen molecules.

View Article and Find Full Text PDF

Quercetin, a key flavonoid found in many fruits and vegetables, offers notable health benefits, including antioxidant, antiviral, and antitumor properties. Yet, isolating it from complex plant materials is challenging. This research aimed to develop a selective and efficient sorbent to clean up real sample matrices and pre-concentrate quercetin, enhancing its detection using high-performance liquid chromatography (HPLC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!