Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein s-nitrosylation (SNO) is one of the most important post-translational modifications and is formed by the covalent modification of nitric oxide and cysteine residues. Extensive studies have shown that SNO plays a pivotal role in the plant immune response and treating various major human diseases. In recent years, SNO sites have become a hot research topic. Traditional biochemical methods for SNO site identification are time-consuming and costly. In this study, we developed an economical and efficient SNO site prediction tool named Mul-SNO. Mul-SNO ensembled current popular and powerful deep learning model bidirectional long short-term memory (BiLSTM) and bidirectional encoder representations from Transformers (BERT). Compared with existing state-of-the-art methods, Mul-SNO obtained better ACC of 0.911 and 0.796 based on 10-fold cross-validation and independent data sets, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2021.3123503 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!