AbstractIndirect effects arise when one species influences how another species interacts with a third. Pollinator-mediated indirect effects are widespread in many plant communities and are often not restricted to plant species pairs. An analytical framework does not exist yet that allows for the evaluation of indirect effects through shared pollinators in a community context as well as their consequences for plant fitness. We used network indices describing pollinator sharing to assess the extent to which plant species affect and are affected by others in a pollination network from a species-rich dune community. For 23 plant species, we explore how these indices relate to plant fecundity (seeds/flower) over two years. We further linked plant traits and indices to uncover functional aspects of pollinator-mediated indirect interactions. Species frequently visited by shared pollinators showed higher fecundity and exhibited traits that increase pollinator attraction and generalization. Conversely, species whose shared pollinators frequently visited other plants had lower fecundity and more specialized traits. Thus, pollinator sharing benefited some species while others suffered reproductive disadvantages, consistent with competition. The framework developed here uses network tools to advance our understanding of how pollinator-mediated indirect interactions influence a species' relative reproductive success at the community level.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1086/716896 | DOI Listing |
Climate change alters environmental conditions in ways that directly and indirectly affect plants. Flowering plants, for example, modify reproductive allocation in response to heat and drought stress, and such changes can in turn affect pollinator visitation and, ultimately, plant reproduction. Although the individual effects of warming and drought on plant reproductive allocation are well known, these factors may interact to influence reproduction.
View Article and Find Full Text PDFPlants (Basel)
April 2023
CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
Pollinator-mediated selection is supposed to influence floral integration. However, the potential pathway through which pollinators drive floral integration needs further investigations. We propose that pollinator proboscis length may play a key role in the evolution of floral integration.
View Article and Find Full Text PDFIntegr Comp Biol
July 2022
Avenue of the Arts, Department of Organismal and Environmental Biology, Christopher Newport University, Newport News, Virginia 23606.
Pollinator selection on floral traits is a well-studied phenomenon, but less is known about the influence of climate on this species interaction. Floral trait evolution could be a result of both adaptation to climate and pollinator-mediated selection. In addition, climate may also determine pollinator communities, leading to an indirect influence of climate on floral traits.
View Article and Find Full Text PDFAm J Bot
March 2022
Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Avenida Américo Vespucio 26, E-41092, Sevilla, Spain.
Premise: Yeasts are often present in floral nectar and can influence plant fitness directly (independently of pollinators) or indirectly by influencing pollinator visitation and behavior. However, few studies have assessed the effect of nectar yeasts on plant reproductive success or compared effects across different plant species, limiting our understanding of the relative impact of direct vs. indirect effects.
View Article and Find Full Text PDFOecologia
January 2022
Institute of Natural Sciences, Federal University of Alfenas, Alfenas, Brazil.
Facilitation and competition among plants sharing pollinators have contrasting consequences for plant fitness. However, it is unclear whether pollinator-mediated facilitation and competition may affect pollen limitation (potential contribution of pollination to fitness) in pollination networks. Here, we investigated how pollinator sharing affects pollen limitation in a tropical hummingbird-pollinated community marked by facilitation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!