Lipidomics Reveals Dysregulated Glycerophospholipid Metabolism in the Corpus Striatum of Mice Treated with Cefepime.

ACS Chem Neurosci

National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, No. 1 Keyuan Road, Gaopeng Street, High-Tech Development Zone, Chengdu 610041, People's Republic of China.

Published: December 2021

Cefepime exhibits a broad spectrum of antimicrobial activity and thus is a widely used treatment for severe bacterial infections. Adverse effects on the central nervous system (CNS) have been reported in patients treated with cefepime. Current explanation for the adverse neurobehavioral effect of cefepime is mainly attributed to its ability to cross the blood-brain barrier and competitively bind to the GABAergic receptor; however, the underlying mechanism is largely unknown. In this study, mice were intraperitoneally administered 80 mg/kg cefepime for different periods, followed by neurobehavioral tests and a brain lipidomic analysis. LC/MS-MS-based metabolomics was used to investigate the effect of cefepime on the brain lipidomic profile and metabolic pathways. Repeated cefepime treatment time-dependently caused anxiety-like behaviors, which were accompanied by reduced locomotor activity in the open field test. Cefepime profoundly altered the lipid profile, acyl chain length, and unsaturation of fatty acids in the corpus striatum, and glycerophospholipids accounted for a large proportion of those significantly modified lipids. In addition, cefepime treatment caused obvious alteration in the lipid-enriched membrane structure, neurites, mitochondria, and synaptic vesicles of primary cultured striatal neurons; moreover, the spontaneous electrical activity of striatal neurons was significantly reduced. Collectively, cefepime reprograms glycerophospholipid metabolism in the corpus striatum, which may interfere with neuronal structure and activity, eventually leading to aberrant neurobehaviors in mice.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acschemneuro.1c00608DOI Listing

Publication Analysis

Top Keywords

corpus striatum
12
cefepime
10
glycerophospholipid metabolism
8
metabolism corpus
8
treated cefepime
8
brain lipidomic
8
cefepime treatment
8
striatal neurons
8
lipidomics reveals
4
reveals dysregulated
4

Similar Publications

Neuroimaging stratification reveals the striatal vulnerability to stress as a risk for schizophrenia.

Transl Psychiatry

January 2025

National Clinical Research Center for Aging and Medicine at Huashan Hospital, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, PR China.

The striatum, a core brain structure relevant for schizophrenia, exhibits heterogeneous volumetric changes in this illness. Due to this heterogeneity, its role in the risk of developing schizophrenia following exposure to environmental stress remains poorly understood. Using the putamen (a subnucleus of the striatum) as an indicator for convergent genetic risk of schizophrenia, 63 unaffected first-degree relatives of patients (22.

View Article and Find Full Text PDF

Prosocial behaviors are advantageous to social species, but the neural mechanism(s) through which others receive benefit remain unknown. Here, we found that bystander mice display rescue-like behavior (tongue dragging) toward anesthetized cagemates and found that this tongue dragging promotes arousal from anesthesia through a direct tongue-brain circuit. We found that a direct circuit from the tongue → glutamatergic neurons in the mesencephalic trigeminal nucleus (MTN) → noradrenergic neurons in the locus coeruleus (LC) drives rapid arousal in the anesthetized mice that receive the rescue-like behavior from bystanders.

View Article and Find Full Text PDF

Movement disorders such as Parkinson's disease (PD) and cervical dystonia (CD) are associated with abnormal neuronal activity in the globus pallidus internus (GPi). Reduced firing rate and presence of spiking bursts are typical for CD, whereas PD is characterized by high frequency tonic activity. This research aims to identify the most important pallidal spiking parameters to classify these conditions.

View Article and Find Full Text PDF

Reliability of radiomics features as imaging biomarkers for evaluating brain aging: A study based on myelin protein and diffusion tensor imaging.

Neuroimage

January 2025

Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China. Electronic address:

Radiomics has made considerable progress in neurodegenerative diseases. However, previous studies only explored the feasibility of radiomics in clinical applications. Therefore, the objective of this study was to obtain the most relevant radiomics features with the aging changes of myelin proteins and compare their diagnostic performances with the diffusion tensor imaging (DTI) parameters to identify the reliability of these features as imaging biomarkers for assessing brain aging.

View Article and Find Full Text PDF

Control of striatal circuit development by the chromatin regulator .

Sci Adv

January 2025

Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

The pathophysiology of neurodevelopmental disorders involves vulnerable neural populations, including striatal circuitry, and convergent molecular nodes, including chromatin regulation and synapse function. Despite this, how epigenetic regulation regulates striatal development is understudied. Recurrent de novo mutations in are associated with intellectual disability and autism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!