Determination of interactions of ferrihydrite-humic acid-Pb (II) system.

Environ Sci Pollut Res Int

Key Laboratory of Western China's Environmental Systems (Ministry of Education) and Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.

Published: March 2022

Ferrihydrite often precipitates with humic acid in natural ways, affecting the fate of lead ions, the stabilization of humic acid, and the aging process of ferrihydrite. A series of 2-line ferrihydrite-humic (Fh-HA) acid with varying C loadings has been prepared, the morphology and surface properties of Fh-HA organo-minerals have been characterized, and the adsorption property of Pb ions onto Fh-HA has been studied. The results indicated that a strong interference of HA to ferrihydrite 2-line Fh dominated mineral phase in all samples, but with increasing C/Fe molar ratios, the crystallinity gradually weakened, particles became smaller, and SSA decreased significantly. The data of Mössbauer spectra confirmed C loadings changed the unit structure of ferrihydrite. Fh-HA performed good adsorption properties to Pb (II): high efficiency and big capacity, especially Fh-HA_2.0. pH had great effect on Pb (II) sorption, the pH change affects not only the amounts of competitive ions in solutions, but also the dissociation and protonation of functional groups on the surface of Fh-HA. Sorption kinetics can be well modeled by a pseudo-second-order model, and the process was controlled by film and intraparticle adsorption simultaneously. The adsorption isotherms can be well described by Freundlich isotherm model. The detailed determination results of Fe 2p, O 1 s, and Pb 4f spectra before and after lead adsorption showed mononuclear bidentate or binuclear bidentate ligands occurring on Fh-HA surface, forming stable inner-sphere complex. By comparison of Mössbauer spectra and TEM images, with aging time, a slower evolution of iron oxide/oxyhydroxide phases in Fh-HA-Pb system happened compared to pure ferrihydrite. Ferrihydrite has transformed to a combination of ferrihydrite, goethite, and hematite phases. In this study, the determination of C-Fe interaction, Pb fate influenced by Fh-HA, and transformation of ferrihydrite would have a great implication to application of Fh-HA precipitates in remediation for surface water or groundwater polluted by heavy metals.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-17258-zDOI Listing

Publication Analysis

Top Keywords

ferrihydrite
8
humic acid
8
fh-ha
8
mössbauer spectra
8
adsorption
5
determination interactions
4
interactions ferrihydrite-humic
4
ferrihydrite-humic acid-pb
4
acid-pb system
4
system ferrihydrite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!