The pathogenesis of brain injury caused by carbon monoxide poisoning (COP) is very complex, and there is no exact and reliable treatment in clinic. In the present study, we screened the therapeutic target and related signal pathway of Salvia Miltiorrhiza for acute COP brain injury, and clarified the pharmacological mechanism of multicomponent, multitarget, and multisignal pathway in Salvia Miltiorrhiza by network pharmacology. To further verify the therapeutic effect of Salvia Miltiorrhiza on acute brain injury based on the results of network analysis, a total of 216 male healthy Sprague Dawley rats were collected in the present study and randomly assigned to a normal control group, a COP group and a Tanshinone IIA sulfonate treatment group (72 rats in each group). The rat model of acute severe COP was established by the secondary inhalation in a hyperbaric oxygen chamber. We found that Salvia Miltiorrhiza had multiple active components, and played a role in treating acute brain injury induced by COP through multiple targets and multiple pathways, among them, MAPK/ERK1/2 signaling pathway was one of the most important. COP can start apoptosis process, activate the MAPK/ERK1/2 signaling pathway, and promote the expression of VEGF-A protein and the formation of brain edema. Tanshinone IIA can effectively inhibit apoptosis, up-regulate the expressions of VEGF-A, P-MEK1/2 and P-ERK1/2 proteins, thereby protect endothelial cells, promote angiogenesis and microcirculation, and finally alleviate brain edema.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.23408DOI Listing

Publication Analysis

Top Keywords

salvia miltiorrhiza
20
brain injury
20
acute brain
12
carbon monoxide
8
monoxide poisoning
8
pathway salvia
8
miltiorrhiza acute
8
tanshinone iia
8
mapk/erk1/2 signaling
8
signaling pathway
8

Similar Publications

Background: Astragalus mongholicus (AM) and Salvia miltiorrhiza (SM) are commonly used in traditional Chinese medicine to treat heart failure (HF). Ferroptosis has been studied as a key factor in the occurrence of HF. It remains unclear whether the combined use of AM and SM can effectively improve HF and the underlying mechanisms.

View Article and Find Full Text PDF

Background: Danshen [Salvia miltiorrhiza Bunge (Lamiaceae; Salviae miltiorrhizae radix et rhizoma)] class injections (DSCIs) are widely used in the treatment of coronary heart disease (CHD). However, there are various types of DSCIs available on the market, and it remains uncertain which DSCI has the best clinical efficacy, as well as which one is most effective in regulating inflammatory markers and oxidative stress indicators. The aim of this network meta-analysis (NMA) is to compare the therapeutic effects of different DSCIs to identify the optimal DSCI for the treatment of CHD.

View Article and Find Full Text PDF

Inhibitory Effects of Cryptotanshinone and Dihydrotanshinone I on Intracellular Trafficking of Viral Glycoproteins.

J Microbiol Biotechnol

December 2024

Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, Republic of Korea.

Antiviral agents that target the viral envelope surface glycoproteins can disrupt the interactions between the viral glycoproteins and host cell receptors, thereby preventing viral entry into host cells. However, the mechanisms underlying glycoprotein processing and cellular trafficking have not been fully elucidated. In this study, we aimed to investigate the mechanism of action of cryptotanshinone (CTN) and dihydrotanshinone I (DTN) as inhibitors of viral glycoprotein trafficking, by assessing their inhibitory action on syncytium formation and cytopathic effects.

View Article and Find Full Text PDF

Objectives: To investigate the inhibitory effect of Danshen Injection on endothelial-mesenchymal transition (EndMT) induced by peritoneal dialysis fluid in HMrSV5 cells and the role of the TGF‑β/Smad signaling pathway in mediating this effect.

Methods: HMrSV5 cells cultured in 40% peritoneal dialysis solution for 72 h to induce EndMT were treated with 0.05%, 0.

View Article and Find Full Text PDF

Ginseng-containing Shentao Ruangan granules (STR) have been a well-known Chinese medicine prescription for the treatment of hepatocellular carcinoma (HCC) in China for decades. This study aimed to establish an experimental framework to decipher the underlying mechanism of STR in the treatment of HCC. Microarray analysis, network pharmacology, RNA-sequencing (RNA-seq), bioinformatics analysis, and and experiments were used as integrated approaches to uncover the effects and mechanisms of action of STR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!