A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Lactate ions induce synaptic plasticity to enhance output from the central respiratory network. | LitMetric

Lactate ion sensing has emerged as a process that regulates ventilation during metabolic challenges. Most work has focused on peripheral sensing of lactate for the control of breathing. However, lactate also rises in the central nervous system (CNS) during disturbances to blood gas homeostasis and exercise. Using an amphibian model, we recently showed that lactate ions, independently of pH and pyruvate metabolism, act directly in the brainstem to increase respiratory-related motor outflow. This response had a long washout time and corresponded with potentiated excitatory synaptic strength of respiratory motoneurons. Thus, we tested the hypothesis that lactate ions enhance respiratory output using cellular mechanisms associated with long-term synaptic plasticity within motoneurons. In this study, we confirm that 2 mM sodium lactate, but not sodium pyruvate, increases respiratory motor output in brainstem-spinal cord preparations, persisting for 2 h upon the removal of lactate. Lactate also led to prolonged increases in the amplitude of AMPA-glutamate receptor (AMPAR) currents in individual motoneurons from brainstem slices. Both motor facilitation and AMPAR potentiation by lactate required classic effectors of synaptic plasticity, L-type Ca channels and NMDA receptors, as part of the transduction process but did not correspond with increased expression of immediate-early genes often associated with activity-dependent neuronal plasticity. Altogether these results show that lactate ions enhance respiratory motor output by inducing conserved mechanisms of synaptic plasticity and suggest a new mechanism that may contribute to coupling ventilation to metabolic demands in vertebrates. KEY POINTS: Lactate ions, independently of pH and metabolism, induce long-term increases in respiratory-related motor outflow in American bullfrogs. Lactate triggers a persistent increase in strength of AMPA-glutamatergic synapses onto respiratory motor neurons. Long-term plasticity of motor output and synaptic strength by lactate involves L-type Ca channels and NMDA-receptors as part of the transduction process. Enhanced AMPA receptor function in response to lactate in the intact network is causal for motor plasticity. In sum, well-conserved synaptic plasticity mechanisms couple the brainstem lactate ion concentration to respiratory motor drive in vertebrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8696744PMC
http://dx.doi.org/10.1113/JP282062DOI Listing

Publication Analysis

Top Keywords

lactate ions
20
synaptic plasticity
20
lactate
16
respiratory motor
16
motor output
12
motor
9
plasticity
8
lactate ion
8
ventilation metabolic
8
ions independently
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!