Wetting Behavior of Surface Nanodroplets Regulated by Periodic Nanostructured Surfaces.

ACS Appl Mater Interfaces

Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.

Published: November 2021

Surfaces with nanostructure patterning are broadly encountered in nature, and they play a significant role in regulating various phenomena such as phase transition at the liquid/solid interface. Here, we designed two kinds of template substrates with periodic nanostructure patterns [i.e., nanotrench (NT) and nanopore (NP)]. Surface nanodroplets produced on these nanostructure surfaces were characterized to acquire their morphology and wetting properties. We show that nanostructure patterning could effectively regulate the shape, contact radius, and nucleate site of nanodroplets. While nanodroplets on the NT structure are constrained in one dimension, nanodroplets on the NP structure have enhanced the wetting property with constraints from two dimensions. Further numerical analysis indicates that the morphology and contact angles of nanodroplets on the NT structure depend on the substrate wettability and the droplet volume. These observations demonstrate how physical geometry and chemical heterogeneity of a substrate surface affect the growth and spreading of surface nanodroplets, which deepens our understanding on nanoscale phase separation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c17139DOI Listing

Publication Analysis

Top Keywords

surface nanodroplets
12
nanodroplets structure
12
nanostructure patterning
8
nanodroplets
7
wetting behavior
4
surface
4
behavior surface
4
nanodroplets regulated
4
regulated periodic
4
periodic nanostructured
4

Similar Publications

The wetting characteristics of fluids play a crucial role in various fields of interface and surface science. Contact angle serves as a fundamental indicator of wetting behavior. However, accurate quantification of wetting phenomena even at the macroscale often poses challenges, particularly due to the hysteresis between receding and advancing contact angles.

View Article and Find Full Text PDF

Ultrasound nanodroplets loaded with Siglec-G siRNA and FeO activate macrophages and enhance phagocytosis for immunotherapy of triple-negative breast cancer.

J Nanobiotechnology

December 2024

Ultrasound Medical Center, Gansu Province Clinical Research Center for Ultrasonography, Gansu Province Medical Engineering Research Center for Intelligence Ultrasound, Lanzhou University Second Hospital, Lanzhou, 730030, P.R. China.

Background: The progression of triple-negative breast cancer is shaped by both tumor cells and the surrounding tumor microenvironment (TME). Within the TME, tumor-associated macrophages (TAMs) represent a significant cell population and have emerged as a primary target for cancer therapy. As antigen-presenting cells within the innate immune system, macrophages are pivotal in tumor immunotherapy through their phagocytic functions.

View Article and Find Full Text PDF

Influence of polymer chain length and concentration on the deposition patterns of linear diblock copolymer solution nanodroplets.

Phys Chem Chem Phys

December 2024

State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China.

We perform molecular dynamics simulations to study deposition patterns of linear diblock copolymer solution nanodroplets on a solid surface (a wall). The current work mainly investigates the influence of the polymer concentration, chain length, and solvent-wall interactions. Polymer block-wall interaction strengths () are modified to simulate polymer blocks with different adsorption behaviors, such as weak adsorbable ( = 0.

View Article and Find Full Text PDF

We study superfluid helium droplets multiply charged with Na+ or Ca+ ions. When stable, the charges are found to reside in equilibrium close to the droplet surface, thus representing a physical realization of Thomson's model. We find the minimum radius of the helium droplet that can host a given number of ions using a model whose physical ingredients are the solvation energy of the cations, calculated within the helium density functional theory approach, and their mutual Coulomb repulsion energy.

View Article and Find Full Text PDF

Vibrational wave packets are created in the lowest triplet state 13Σu+ of K2 and Rb2 residing on the surface of helium nanodroplets, through non-resonant stimulated impulsive Raman scattering induced by a moderately intense near-infrared laser pulse. A delayed, intense 50-fs laser pulse doubly ionizes the alkali dimers via multiphoton absorption and thereby causes them to Coulomb explode into a pair of alkali ions Ak+. From the kinetic energy distribution P(Ekin) of the Ak+ fragment ions, measured at a large number of delays, we determine the time-dependent internuclear distribution P(R, t), which represents the modulus square of the wave packet within the accuracy of the experiment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!