Enhancing the Catalytic Activity of MOF-808 Towards Peptide Bond Hydrolysis through Synthetic Modulations.

Chemistry

Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium.

Published: December 2021

The performance of MOFs in catalysis is largely derived from structural features, and much work has focused on introducing structural changes such as defects or ligand functionalisation to boost the reactivity of the MOF. However, the effects of different parameters chosen for the synthesis on the catalytic reactivity of the resulting MOF remains poorly understood. Here, we evaluate the role of metal precursor on the reactivity of Zr-based MOF-808 towards hydrolysis of the peptide bond in the glycylglycine model substrate. In addition, the effect of synthesis temperature and duration has been investigated. Surprisingly, the metal precursor was found to have a large influence on the reactivity of the MOF, surpassing the effect of particle size or number of defects. Additionally, we show that by careful selection of the Zr-salt precursor and temperature used in MOF syntheses, equally active MOF catalysts could be obtained after a 20 minute synthesis compared to 24 h synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202103102DOI Listing

Publication Analysis

Top Keywords

reactivity mof
12
peptide bond
8
metal precursor
8
mof
5
enhancing catalytic
4
catalytic activity
4
activity mof-808
4
mof-808 peptide
4
bond hydrolysis
4
hydrolysis synthetic
4

Similar Publications

Dynamic therapies such as photodynamic therapy (PDT) and sonodynamic therapy (SDT) have potential in cancer treatment. Microalgae have attracted increasing attention because of their high active mobility, flexibility in terms of functionality, and good biocompatibility. In this study, surface-engineered microalgae Chlorella vulgaris (Chl) modified with metal‒organic framework (MOF) nanoparticles (denoted Chl-MOF) are successfully developed for synergistic photo-sonodynamic therapy and immunotherapy.

View Article and Find Full Text PDF

Hafnium-Based Metal-Organic Framework Nanosystems Entrapping Squaraines for Efficient NIR-Responsive Photodynamic Therapy.

ACS Appl Mater Interfaces

December 2024

Department of Chemistry, NIS Interdepartmental and INSTM Reference Centre, University of Torino, Via G. Quarello 15/A, 10135 and Via P. Giuria 7, 10125 Turin, Italy.

In this study, we present for the first time the incorporation of two distinct nonsymmetrical squaraines (SQ) into hierarchically porous Hafnium-based UiO-66 Metal-Organic Frameworks (MOFs), each functionalized with various moieties, for application as photosensitizers in photodynamic therapy. SQs are meticulously designed to feature COOH moieties for interaction with the MOF's metallic cluster and bromine atoms to enhance intersystem crossing and reactive oxygen species (ROS) production. The distinct central functionalizations, one with squaric acid and the other with a dicyanovinyl-substituted squaric acid derivative, result in unique geometric conformations.

View Article and Find Full Text PDF

Free-standing bimetallic Co/Ni-MOF foams toward enhanced methane dry reforming under non-thermal plasma catalysis.

J Colloid Interface Sci

December 2024

Laboratory of Plasma and Energy Conversion, School of Physics and Optoelectronic Engineering, Ludong University, Yantai, China. Electronic address:

Understanding of the structure and interfacial merits that reactive metal-organic frameworks (MOFs) undergo is critical for constructing efficient catalysts for non-thermal plasma-assisted conversion of greenhouse gases. Herein, we proposed a free-standing bimetallic (Co/Ni) MOFs supported on bacterial cellulose (BC) foams (Co/Ni-MOF@BC) toward the coaxial dielectric barrier discharge (DBD) plasma-catalytic system, of which the Co/Ni ions coordination demonstrated an intriguing textual uplifting of the malleable BC nanofiber network with abundant pores up to micrometer-scale, which could impart a more intensive predominant filamentary microdischarge current to 180 mA with stronger plasma-catalytic interaction. Remarkably, compared to the monometallic MOF@BC foams, this bimetallic Co/Ni-MOF@BC also delivered a substantially improved alkaline absorption ability as further confirmed by the CO- temperature-programmed desorption (TPD) result.

View Article and Find Full Text PDF

Glucose-Activated Janus Wound Dressing for Enhanced Management of Infected and Exudative Diabetic Wounds.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China.

Article Synopsis
  • Diabetic wounds present complex challenges due to factors like high glucose levels and infections, leading to increased demand for innovative wound dressings in biomedical engineering.
  • A new Janus wound dressing has been developed, combining a hydrophobic antimicrobial layer with a hydrophilic sponge, which helps manage wound exudate and enhances healing.
  • In lab tests, this dressing improved healing rates by 54% within three days and effectively reduced methicillin-resistant (MRSA) infections, highlighting its potential for treating chronic diabetic wounds.
View Article and Find Full Text PDF

Linker Installation in a Metal-Organic Framework for Enhanced Quantitative Redox Species Recognition.

Angew Chem Int Ed Engl

December 2024

Texas A&M University College Station: Texas A&M University, Department of Chemistry, Corner of Ross and Spence Streets, P O Box 30012, 77842-3012, College Station, UNITED STATES OF AMERICA.

Linker installation has proven to be an effective strategy for introducing diverse functional groups into metal-organic frameworks (MOFs). Reductants and oxidants are found in various environments, but their accumulation poses a danger due to their high reactivity, necessitating prompt monitoring instantly, particularly in natural environments and industrial processes. In this study, a series of redox-active dyes were successfully incorporated into a flexible Zr-based MOF, PCN-700, through linker installation strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!