Creation of scaffold-based tissue-engineered constructs (SB TECs) is costly and requires coordinated qualified efforts. Cryopreservation enables longer shelf-life for SB TECs while enormously enhancing their availability as medical products. Regenerative treatment with cryopreserved SB TECs prepared in advance (possibly prêt-à-porter) can be started straight away on demand. Animal studies and clinical trials indicate similar levels of safety for cryopreserved and freshly prepared SB TECs. Although cryopreservation of such constructs is more difficult than that of cell suspensions or tissues, years of research have proved the principal possibility of using ready-to-transplant SB TECs after prolonged cryostorage. Cryopreservation efficiency depends not only on the sheer viability of adherent cells on scaffolds after thawing, but largely on the retention of proliferative and functional properties by the cells, as well as physical and mechanical properties by the scaffolds. Cryopreservation protocols require careful optimization, as their efficiency depends on multiple parameters including cryosensitivity of cells, chemistry and architecture of scaffolds, conditions of cell culture before freezing, cryoprotectant formulations, etc. In this review we discuss recent achievements in SB TEC cryopreservation as a major boost for the field of tissue engineering and biobanking.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12015-021-10299-4DOI Listing

Publication Analysis

Top Keywords

efficiency depends
8
cryopreservation
6
tecs
5
cryopreservation tissue-engineered
4
tissue-engineered scaffold-based
4
scaffold-based constructs
4
constructs concept
4
concept reality
4
reality creation
4
creation scaffold-based
4

Similar Publications

Typical Atrial Flutter: A Practical Review.

J Cardiovasc Electrophysiol

January 2025

Cardiology Division, Geneva University Hospitals, Geneva, Switzerland.

Typical atrial flutter (AFL), defined as cavotricuspid isthmus (CTI)-dependent macro-re-entrant atrial tachycardia, often causes debilitating symptoms, and is associated with increased incidence of atrial fibrillation, stroke, heart failure, and death. Typical AFL occurs in patients with atrial remodeling and shares risk factors with atrial fibrillation. It is also common in patients with a history of prior heart surgery or catheter ablation.

View Article and Find Full Text PDF

Nucleotide sequence can be translated in three reading frames from 5' to 3' producing distinct protein products. Many examples of RNA translation in two reading frames (dual coding) have been identified so far. We report simultaneous translation of mRNA transcripts derived from locus in all three reading frames that result in the synthesis of long proteins.

View Article and Find Full Text PDF

Unlabelled: Strain-level variation among host-associated bacteria often determines host range and the extent to which colonization is beneficial, benign, or pathogenic. is a beneficial symbiont of the light organs of fish and squid with known strain-specific differences that impact host specificity, colonization efficiency, and interbacterial competition. Here, we describe how the conserved global regulator, H-NS, has a strain-specific impact on a critical colonization behavior: biofilm formation.

View Article and Find Full Text PDF

ASAP1 is a multidomain Arf GTPase-activating protein (ArfGAP) that catalyzes GTP hydrolysis on the small GTPase Arf1 and is implicated in cancer progression. The PH domain of ASAP1 enhances its activity greater than 7 orders of magnitude but the underlying mechanisms remain poorly understood. Here, we combined Nuclear Magnetic Resonance (NMR), Molecular Dynamic (MD) simulations and mathematical modeling of functional data to build a comprehensive structural-mechanistic model of the complex of Arf1 and the ASAP1 PH domain on a membrane surface.

View Article and Find Full Text PDF

Sample multiplexing is an emerging method in single-cell RNA sequencing (scRNA-seq) that addresses high costs and batch effects. Current multiplexing schemes use DNA labels to barcode cell samples but are limited in their stability and extent of labeling across heterogeneous cell populations. Here, we introduce Nanocoding using lipid nanoparticles (LNPs) for high barcode labeling density in multiplexed scRNA-seq.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!