Neutrophil elastase (NE) promotes multiple stages of tumorigenesis. However, little is known regarding the molecular mechanisms underlying its stimulatory role. This study shows that NE triggers dose-dependent ERK signaling and cell migration in a panel of prostate cell lines representing the spectrum of prostate cell malignancy. All cell lines tested internalize NE; however, NE endocytosis is not required for ERK activation. Instead, NE acts extracellularly by stimulating the release of amphiregulin to initiate EGFR-dependent signaling. Inhibiting amphiregulin's biological activity with neutralizing antibodies, as well as gene silencing of amphiregulin or EGFR, attenuates NE-induced migration in normal and benign prostatic cells. Alternatively, in prostate cancer cells, knockdown of receptor tyrosine kinase AXL, but not EGFR, impairs both basal and NE-stimulated migration. When prostate cells progress to malignancy, the switch from EGFR-to AXL-dependence in NE-mediated migration implies the potential combined application of EGFR and AXL targeted therapy in prostate cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8567381 | PMC |
http://dx.doi.org/10.1016/j.isci.2021.103270 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!