Simultaneous Monitoring Cytoplasmic Calcium Ion and Cell Surface Phosphatidylserine in the Necrotic Touch Neurons of .

Bio Protoc

Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA.

Published: October 2021

Calcium ions trigger many cellular events, including the release of neurotransmitters at the synaptic terminal and excitotoxic cell death. Recently, we have discovered that a transient increase in the level of cytoplasmic Ca triggers the exposure of phosphatidylserine (PS) on the surfaces of necrotic cells in the nematode . PS serves as an "eat me" signal that attracts engulfing cells to engulf and degrade necrotic cells. During the above study, we developed a microscopic imaging protocol for real-time monitoring the levels of cytoplasmic Ca and cell surface PS in touch neurons. Previously, Ca dynamics was monitored in neurons in larvae in time periods ranging from milliseconds to seconds. Methods for monitoring Ca dynamics for a relatively long period of time during embryonic development were not available, let alone for simultaneous monitoring Ca and PS dynamics. The protocol reported here utilizes a deconvolution imaging system with an optimized experimental setting that reduces photo-damage and allows the proper development of embryos during the real-time imaging process. This protocol enables the simultaneous measurement of cytosolic Ca and cell surface PS levels in necrotic touch neurons during embryonic development in a period longer than six hours. Our method provides an easy and sensitive approach to perform long-time Ca and PS recording in living animals, simultaneously or individually. This protocol can be applied to study various cellular and developmental events that involve the dynamic regulation of Ca and/or PS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554807PMC
http://dx.doi.org/10.21769/BioProtoc.4187DOI Listing

Publication Analysis

Top Keywords

cell surface
12
touch neurons
12
simultaneous monitoring
8
necrotic touch
8
necrotic cells
8
monitoring dynamics
8
embryonic development
8
monitoring cytoplasmic
4
cytoplasmic calcium
4
calcium ion
4

Similar Publications

TREM2 is a signaling receptor expressed on microglia that has emerged as an important drug target for Alzheimer's disease and other neurodegenerative diseases. While a number of TREM2 ligands have been identified, little is known regarding the structural details of how they engage. To better understand this, we created a protein library of 28 different TREM2 variants that could be used to map interactions with various ligands using biolayer interferometry.

View Article and Find Full Text PDF

Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface.

View Article and Find Full Text PDF

Background: Microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC) patients are the dominant population in immune checkpoint blockade treatments, while more than half of them could not benefit from single-agent immunotherapy. We tried to identify the biomarker of MSI-H CRC and explore its role and mechanism in anti-PD-1 treatments. Tumor-specific MHC-II was linked to a better response to anti-PD-1 in MSI-H CRC and CD74 promoted assembly and transport of HLA-DR dimers.

View Article and Find Full Text PDF

The recent emergence of bile salt hydrolase (BSH) enzyme as a therapeutic target reflects its unbound potential in mitigating hypercholesterolemia, obesity, and gastrointestinal issues. However, to bolster its industrial application, optimization of BSH assay lays the cornerstone for enhancing sensitivity, specificity, and reproducibility. The current study delved into optimizing the BSH assay parameters utilizing response surface methodology (RSM) and one-factor-at-a-time (OFAT) method for two novel, natural BSH producers, Heyndrickxia coagulans ATCC 7050 and Lactiplantibacillus plantarum ATCC 10012.

View Article and Find Full Text PDF

Adoptive cell therapies (ACT) have shown reduced efficacy against solid tumor malignancies compared to hematologic malignancies, partly due to the immunosuppressive nature of the tumor microenvironment (TME). ACT efficacy may be enhanced with pleiotropic cytokines that remodel the TME; however, their expression needs to be tightly controlled to avoid systemic toxicities. Here we show T cells can be armored with membrane-bound cytokines with surface expression regulated using drug-responsive domains (DRDs) developed from the 260-amino acid protein human carbonic anhydrase 2 (CA2).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!