The first appearance of Fusarium head blight (FHB)-and the beginning of scientific research of this disease-occurred the Far East region of Russia at the end of the 19th century. In the summer of 2019, in the Amur region, which comprises 60-70% of grain production in the Russian Far East, flooding caused a state of emergency. The quality of wheat and barley grains grown under natural conditions of FHB outbreaks, including grain infection, fungal species composition, DNA content of and chemotypes, and the presence of various mycotoxins, was studied. infection rates reached extremely high percentages, 51-98%, the majority of which were infections. The amount of DNA in wheat grain samples was higher than in the barley grain samples and averaged 6.1 and 2.1 pg/ng, respectively. The content of deoxynivalenol (DON) in the wheat samples reached 13,343 ppb and in barley reached 7,755 ppb. A multilocus genotyping assay was conducted on the partially sequenced fragments of the translation elongation factor EF-1a, ammonium ligase gene, reductase gene, and 3-O-acetyltransferase gene in 29 strains from the grain harvested in the Amur region. All strains from the Far East region were characterized as ; 70% were the 15-AcDON chemotype, while the other strains were the 3-AcDON chemotype. According to the results, after 140 years of study of FHB, we are still not very successful in controlling this disease if conditions are favorable for pathogen development. Even at present, some of the grain harvested must be destroyed, as high contamination of mycotoxins renders it unusable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8557700PMC
http://dx.doi.org/10.7717/peerj.12346DOI Listing

Publication Analysis

Top Keywords

fusarium head
8
head blight
8
russian east
8
140 years
8
east region
8
amur region
8
grain samples
8
grain harvested
8
grain
6
blight russian
4

Similar Publications

A conserved fungal Knr4/Smi1 protein is crucial for maintaining cell wall stress tolerance and host plant pathogenesis.

PLoS Pathog

January 2025

Strategic Area: Protecting Crops and the Environment, Rothamsted Research, Harpenden, Hertfordshire, United Kingdom.

Filamentous plant pathogenic fungi pose significant threats to global food security, particularly through diseases like Fusarium Head Blight (FHB) and Septoria Tritici Blotch (STB) which affects cereals. With mounting challenges in fungal control and increasing restrictions on fungicide use due to environmental concerns, there is an urgent need for innovative control strategies. Here, we present a comprehensive analysis of the stage-specific infection process of Fusarium graminearum in wheat spikes by generating a dual weighted gene co-expression network (WGCN).

View Article and Find Full Text PDF

Background: Fusarium head blight (FHB) is a major disease affecting cereal crops including wheat, barley, rye, oats and maize. Its predominant causal agent is the ascomycete fungus Fusarium graminearum, which infects the spikes and thereby reduces grain yield and quality. The frequency and severity of FHB epidemics has increased in recent years, threatening global food security.

View Article and Find Full Text PDF

Fusarium head blight (FHB), mainly caused by Fusarium graminearum and Fusarium culmorum, is a major wheat disease. Significant efforts have been made to improve resistance to FHB in bread wheat (Triticum aestivum), but more work is needed for durum wheat (Triticum turgidum spp. durum).

View Article and Find Full Text PDF

A Multiplex High-Resolution Melting (HRM) assay to differentiate Fusarium graminearum chemotypes.

Sci Rep

December 2024

Cereal Disease Laboratory, Agricultural Research Service, US Department of Agriculture, St. Paul, MN, 55108, USA.

Fusarium graminearum is a primary cause of Fusarium head blight (FHB) on wheat and barley. The fungus produces trichothecene mycotoxins that render grain unsuitable for food, feed, or malt. Isolates of F.

View Article and Find Full Text PDF

Background: is the causal agent of Fusarium Head Blight (FHB) on wheat and produces deoxynivalenol (DON), known to cause extreme human and animal toxicosis. This species' genome contains genes involved in plant-pathogen interactions and regulated by chromatin modifications. Moreover, histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), have been employed to study gene transcription regulation because they can convert the structure of chromatin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!