RNA editing is widely involved in stem cell differentiation and development; however, RNA editing events during human cardiomyocyte differentiation have not yet been characterized and elucidated. Here, we identified genome-wide RNA editing sites and systemically characterized their genomic distribution during four stages of human cardiomyocyte differentiation. It was found that the expression level of ADAR1 affected the global number of adenosine to inosine (A-to-I) editing sites but not the editing degree. Next, we identified 43, 163, 544, and 141 RNA editing sites that contribute to changes in amino acid sequences, variation in alternative splicing, alterations in miRNA-target binding, and changes in gene expression, respectively. Generally, RNA editing showed a stage-specific pattern with 211 stage-shared editing sites. Interestingly, cardiac muscle contraction and heart-disease-related pathways were enriched by cardio-specific editing genes, emphasizing the connection between cardiomyocyte differentiation and heart diseases from the perspective of RNA editing. Finally, it was found that these RNA editing sites are also related to several congenital and noncongenital heart diseases. Together, our study provides a new perspective on cardiomyocyte differentiation and offers more opportunities to understand the mechanisms underlying cell fate determination, which can promote the development of cardiac regenerative medicine and therapies for human heart diseases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8551472 | PMC |
http://dx.doi.org/10.1016/j.omtn.2021.10.001 | DOI Listing |
Curr Opin Microbiol
January 2025
Gulbenkian Institute for Molecular Medicine (GIMM), Avenida Professor Egas Moniz, Lisboa, Portugal. Electronic address:
Genome editing technologies, such as CRISPR-Cas9, have revolutionised the study of genes in a variety of organisms, including unicellular parasites. Today, the CRISPR-Cas9 technology is vastly applied in high-throughput screens to investigate interactions between the Apicomplexan parasite Toxoplasma gondii and its hosts. In vitro and in vivo T.
View Article and Find Full Text PDFChembiochem
January 2025
National University of Singapore, Chemical and Biomolecular Engineering, Block E5 #02-09, 4 Engineering Drive 4, 117585, Singapore, SINGAPORE.
Clustered regularly interspaced short palindromic repeats (CRISPR) associated protein Cas9 system has been widely used for genome editing. However, the editing or cleavage specificity of CRISPR Cas9 remains a major concern due to the off-target effects. The existing approaches to control or modulate CRISPR Cas9 cleavage include engineering Cas9 protein and development of anti-CRISPR proteins.
View Article and Find Full Text PDFKardiol Pol
January 2025
1st Department of Cardiology, Poznan University of Medical Sciences, Poznań, Poland.
PLoS One
January 2025
Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada.
The ability to determine the essentiality of a gene in the protozoan parasite Leishmania is important to identify potential targets for intervention and understanding the parasite biology. CRISPR gene editing technology has significantly improved gene targeting efficiency in Leishmania. There are two commonly used CRISPR gene targeting methods in Leishmania; the stable expression of the gRNA and Cas9 using a plasmid containing a Leishmania ribosomal RNA gene promoter (rRNA-P stable protocol) and the T7 RNA polymerase based transient gRNA expression system in promastigotes stably expressing Cas9 (T7 transient protocol).
View Article and Find Full Text PDFNat Genet
January 2025
Institute of Molecular Oncology, Philipps-University, Marburg, Germany.
The mutational landscape of TP53, a tumor suppressor mutated in about half of all cancers, includes over 2,000 known missense mutations. To fully leverage TP53 mutation status for personalized medicine, a thorough understanding of the functional diversity of these mutations is essential. We conducted a deep mutational scan using saturation genome editing with CRISPR-mediated homology-directed repair to engineer 9,225 TP53 variants in cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!