Characterization of Genes in Pepper and Functional Analysis of in Cold and Salt Stress.

Front Plant Sci

Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China.

Published: October 2021

As a subfamily of basic helix-loop-helix (bHLH) transcription factors, phytochrome-interacting factors (PIFs) participate in regulating light-dependent growth and development of plants. However, limited information is available about PIFs in pepper. In the present study, we identified six pepper genes using bioinformatics-based methods. Phylogenetic analysis revealed that the PIFs from pepper and some other plants could be divided into three distinct groups. Motif analysis revealed the presence of many conserved motifs, which is consistent with the classification of PIF proteins. Gene structure analysis suggested that the genes have five to seven introns, exhibiting a relatively more stable intron number than other plants such as rice, maize, and tomato. Expression analysis showed that was up-regulated by cold and salt treatments. -silenced pepper plants obtained by virus-induced gene silencing (VIGS) exhibited higher sensitivity to cold and salt stress, with an obvious increase in relative electrolyte leakage (REL) and variations in the expression of stress-related genes. Further stress tolerance assays revealed that plays different regulatory roles in cold and salt stress response by promoting the expression of the gene and ABA biosynthesis genes, respectively. Our results reveal the key roles of in cold and salt tolerance of pepper, and lay a solid foundation for clarifying the biological roles of in pepper and other plants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8572859PMC
http://dx.doi.org/10.3389/fpls.2021.746517DOI Listing

Publication Analysis

Top Keywords

cold salt
20
salt stress
12
pepper plants
12
pifs pepper
8
analysis revealed
8
roles cold
8
pepper
7
analysis
5
cold
5
salt
5

Similar Publications

Background: Hand-arm Vibration Syndrome (HAVS) is a disorder caused by prolonged exposure to hand-held vibrating instruments, commonly observed in industrial contexts such as mining, construction, and manufacturing. It involves symptoms affecting the musculoskeletal, neurological, and vascular systems of the arm and hand.

Purpose: The main aim of this study is to determine the prevalence of HAVS among laborers working in the Khewra salt mines.

View Article and Find Full Text PDF

Genome-wide identification of the papaya-like cysteine protease family in poplar and determination of the functional role of PeRD19A in conferring salt tolerance.

Int J Biol Macromol

December 2024

Institute of Forest Biotechnology, Forestry College, Agricultural University of Hebei, Baoding 071000, China; Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, Baoding 071000, China. Electronic address:

Papain-like cysteine proteases (PLCPs) are a large class of proteolytic enzymes involved in plant growth and development as well as plant responses to biological and abiotic stresses. However, there is no detailed characterization of PLCPs genes in poplar. In this study, a genome-wide analysis of the poplar PtrPLCPs family revealed 47 PtrPLCPs, which were classified into nine subfamilies according to their phylogeny: RD21, CEP, XCP, XBCP3, SAG12, RD19 (5), ALP, CTB, and the lost THI subgroups.

View Article and Find Full Text PDF

For over a century African swine fever (ASF) has been causing outbreaks leading to devastating losses for the swine industry. The current pandemic of ASF has shown no signs of stopping and continues to spread causing outbreaks in additional countries. Currently control relies mostly on culling infected farms, and strict biosecurity procedures.

View Article and Find Full Text PDF

The present research work is concerned with the production and optimization of the dopa-oxidase enzyme by using pre-grown mycelia of Aspergillus oryzae. Different strains of A. oryzae were collected and isolated from various soil samples.

View Article and Find Full Text PDF

OsWRKY49 on qAT5 positively regulates alkalinity tolerance at the germination stage in Oryza sativa L. ssp. japonica.

Theor Appl Genet

December 2024

Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.

Integrated genome-wide association study and linkage mapping revealed genetic basis of alkalinity tolerance during rice germination. The key gene OsWRKY49 was further verified in transgenic plants. With the widespread use of the rice direct seeding cultivation model, improving the tolerance of rice varieties to salinity-alkalinity at the germination stage has become increasingly important.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!