Cell-based assays for compound screening and profiling are fundamentally important in life sciences, chemical biology and pharmaceutical research. Most cell assays measure the amount of a single reporter molecule or cellular endpoint, and require the use of fluorescence or other labeled materials. Consequently, there is high demand for label-free technologies that enable multiple biomolecules or endpoints to be measured simultaneously. Here, we describe how to develop, optimize and validate MALDI-TOF mass spectrometry (MS) cell assays that can be used to measure cellular uptake of transporter substrates, to monitor cellular drug target engagement or to discover cellular drug-response markers. In uptake assays, intracellular accumulation of a transporter substrate and its inhibition by test compounds is measured. In drug response assays, changes to multiple cellular metabolites or to abundant posttranslational protein modifications are monitored as reporters of drug activity. We detail a ten-part optimization protocol with every part taking 1-2 d that leads to a final 2 d optimized procedure, which includes cell treatment, transfer, MALDI MS-specific sample preparation, quantification using stable-isotope-labeled standards, MALDI-TOF MS data acquisition, data processing and analysis. Key considerations for validation and automation of MALDI-TOF MS cell assays are outlined. Overall, label-free MS cell-based assays offer speed, sensitivity, accuracy and versatility in drug research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41596-021-00624-z | DOI Listing |
Hum Exp Toxicol
January 2025
Department of Gynecology and Obstetrics, Fuyong People's Hospital, Shenzhen, China.
Gestational diabetes mellitus (GDM) is a metabolic disorder that arises during pregnancy and heightens the risk of placental dysplasia. Ginsenoside Re (Re) may stabilize insulin and glucagon to regulate glucose levels, which may improve diabetes-associated diseases. This study aims to investigate the mechanism of Re in high glucose (HG)-induced apoptosis of trophoblasts through endoplasmic reticulum stress (ERS)-related protein CHOP/GADD153.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India.
Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, Jilin, China.
Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.
View Article and Find Full Text PDFMol Neurobiol
January 2025
Department of Anesthesiology, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Wuhu, 241004, China.
Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Physics \ Collage of Sciences, University of Kufa, Najaf, Iraq.
This research utilizes density functional theory to investigate the ground and excited-state properties of a new series of organic dyes with D-π-A configurations (D1-D6) for their potential application in dye-sensitized solar cells. The study focuses on modifying these dyes using various functional groups as π-bridges to optimize their electronic properties and improve their efficiency as sensitizers in DSSCs. The frontier molecular orbitals (HOMO and LUMO) were analysed to evaluate electron transfer properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!