Self-guarding of MORC3 enables virulence factor-triggered immunity.

Nature

Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.

Published: December 2021

Pathogens use virulence factors to inhibit the immune system. The guard hypothesis postulates that hosts monitor (or 'guard') critical innate immune pathways such that their disruption by virulence factors provokes a secondary immune response. Here we describe a 'self-guarded' immune pathway in human monocytes, in which guarding and guarded functions are combined in one protein. We find that this pathway is triggered by ICP0, a key virulence factor of herpes simplex virus type 1, resulting in robust induction of anti-viral type I interferon (IFN). Notably, induction of IFN by ICP0 is independent of canonical immune pathways and the IRF3 and IRF7 transcription factors. A CRISPR screen identified the ICP0 target MORC3 as an essential negative regulator of IFN. Loss of MORC3 recapitulates the IRF3- and IRF7-independent IFN response induced by ICP0. Mechanistically, ICP0 degrades MORC3, which leads to de-repression of a MORC3-regulated DNA element (MRE) adjacent to the IFNB1 locus. The MRE is required in cis for IFNB1 induction by the MORC3 pathway, but is not required for canonical IFN-inducing pathways. As well as repressing the MRE to regulate IFNB1, MORC3 is also a direct restriction factor of HSV-1. Our results thus suggest a model in which the primary anti-viral function of MORC3 is self-guarded by its secondary IFN-repressing function-thus, a virus that degrades MORC3 to avoid its primary anti-viral function will unleash the secondary anti-viral IFN response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9045311PMC
http://dx.doi.org/10.1038/s41586-021-04054-5DOI Listing

Publication Analysis

Top Keywords

virulence factors
8
immune pathways
8
ifn response
8
degrades morc3
8
primary anti-viral
8
anti-viral function
8
morc3
7
immune
5
icp0
5
ifn
5

Similar Publications

Distinct Virulence Mechanisms of in Onion Foliar and Bulb Scale Tissues.

Mol Plant Microbe Interact

January 2025

Univ of Georgia, Plant Pathology, 3303 Miller Plant Sciences, Athens, United States, 30602;

Slippery skin of onion caused by pv. (Bga) is a common bacterial disease reported from onion growing regions around the world. Despite the increasing attention in recent years, our understanding of the virulence mechanisms of this pathogen remains limited.

View Article and Find Full Text PDF

Unlabelled: causes bacterial cold-water disease (BCWD) in salmonids and other fish, resulting in substantial economic losses in aquaculture worldwide. The mechanisms uses to cause disease are poorly understood. Despite considerable effort, most strains of have resisted attempts at genetic manipulation.

View Article and Find Full Text PDF

Exploring nagZ as a virulence biomarker and treatment target in Enterobacter cloacae.

BMC Microbiol

January 2025

Department of Laboratory Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China.

Background: Enterobacter cloacae is increasingly prevalent and resistant to multiple antibiotics, making it a significant pathogen in healthcare settings with high mortality rates. However, its pathogenic mechanisms are not fully understood.

Results: In this study, we explored the role of nagZ in regulating the virulence of E.

View Article and Find Full Text PDF

In addressing the formidable challenge posed by methicillin-resistant Staphylococcus aureus (MRSA), this investigation elucidates a novel therapeutic paradigm by specifically targeting the virulence factor sortase A (SrtA) utilizing Tubuloside A (TnA). SrtA plays a critical role in the pathogenicity of MRSA, primarily by anchoring surface proteins to the bacterial cell wall, which is crucial for the bacterium's ability to colonize and infect host tissues. By inhibiting SrtA, TnA offers a novel and distinct strategy compared to traditional antibiotics.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) is an increasing problem worldwide, and new treatment options for bacterial infections are direly needed. Engineered probiotics show strong potential in treating or preventing bacterial infections. However, one concern with the use of live bacteria is the risk of the bacteria acquiring genes encoding for AMR or virulence factors through horizontal gene transfer (HGT), and the transformation of the probiotic into a superbug.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!