AI Article Synopsis

  • Oxygen exchange at interfaces of oxides is crucial for understanding catalytic activity and material degradation, but the atomic details are often unclear.
  • New findings reveal that stable, defect-free surfaces can reactively exchange oxygen with water vapor quickly at temperatures below 70°C without altering their atomic structure.
  • This exchange occurs mainly during the final stages of water desorption and involves a process where the stability of a specific hydrogen-oxygen complex offsets the energy costs of extracting lattice oxygen, offering insights valuable for various scientific fields.

Article Abstract

Oxygen exchange at oxide/liquid and oxide/gas interfaces is important in technology and environmental studies, as it is closely linked to both catalytic activity and material degradation. The atomic-scale details are mostly unknown, however, and are often ascribed to poorly defined defects in the crystal lattice. Here we show that even thermodynamically stable, well-ordered surfaces can be surprisingly reactive. Specifically, we show that all the 3-fold coordinated lattice oxygen atoms on a defect-free single-crystalline "r-cut" ([Formula: see text]) surface of hematite (α-FeO) are exchanged with oxygen from surrounding water vapor within minutes at temperatures below 70 °C, while the atomic-scale surface structure is unperturbed by the process. A similar behavior is observed after liquid-water exposure, but the experimental data clearly show most of the exchange happens during desorption of the final monolayer, not during immersion. Density functional theory computations show that the exchange can happen during on-surface diffusion, where the cost of the lattice oxygen extraction is compensated by the stability of an HO-HOH-OH complex. Such insights into lattice oxygen stability are highly relevant for many research fields ranging from catalysis and hydrogen production to geochemistry and paleoclimatology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580966PMC
http://dx.doi.org/10.1038/s41467-021-26601-4DOI Listing

Publication Analysis

Top Keywords

lattice oxygen
12
oxygen exchange
8
water vapor
8
oxygen
5
rapid oxygen
4
exchange
4
exchange hematite
4
hematite water
4
vapor oxygen
4
exchange oxide/liquid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!