A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Stretchable Conductive Fabric Enabled By Surface Functionalization of Commercial Knitted Cloth. | LitMetric

Stretchable Conductive Fabric Enabled By Surface Functionalization of Commercial Knitted Cloth.

ACS Appl Mater Interfaces

Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, No. 319, Section 3, Zhongshan Road, Luzhou 646000, Jiangyang District, Sichuan, P. R. China.

Published: November 2021

Textile-based stretchable electronic devices are one of the best candidates for future wearable applications, as they can simultaneously provide high compliance and wearing comfort to the human body. Stretchable conductive textile is the fundamental building block for constructing high-performance textile-based stretchable electronic devices. Here, we report a simple strategy for the fabrication of stretchable conductive fabric using commercial knitted cloth as a substrate. Briefly, we coated the fibers of the fabric with a thin layer of poly(styrene--butadiene--styrene) (SBS) by dip-coating. Then, silver nanoparticles (AgNPs) were loaded on the fabric by sequential absorption and in situ reduction. After loading AgNPs, the conductivity of the fabric could be as high as ∼800 S/m, while its maximal strain at break was higher than 540%. Meanwhile, such fabric also possesses excellent permeability, robust endurance to repeated stretching, long-time washing, and mechanical rubbing or tearing. We further approve that the fabric is less cytotoxic to mammalian skin and antibacterial to microbial, making it safe for on-skin applications. With these multifarious advantages, the fabric developed here is promising for on-skin wearable applications. As a proof-of-concept, we demonstrate its use as an electrode for collecting electrocardiograph signals and electrothermal therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c15268DOI Listing

Publication Analysis

Top Keywords

stretchable conductive
12
fabric
8
conductive fabric
8
commercial knitted
8
knitted cloth
8
textile-based stretchable
8
stretchable electronic
8
electronic devices
8
wearable applications
8
stretchable
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!