Objectives: Hypertension is a modifiable risk factor for numerous comorbidities and treating hypertension can greatly improve health outcomes. We sought to increase the efficiency of a virtual hypertension management program through workflow automation processes.
Methods: We developed a customer relationship management (CRM) solution at our institution for the purpose of improving processes and workflow for a virtual hypertension management program and describe here the development, implementation, and initial experience of this CRM system.
Results: Notable system features include task automation, patient data capture, multi-channel communication, integration with our electronic health record (EHR), and device integration (for blood pressure cuffs). In the five stages of our program (intake and eligibility screening, enrollment, device configuration/setup, medication titration, and maintenance), we describe some of the key process improvements and workflow automations that are enabled using our CRM platform, like automatic reminders to capture blood pressure data and present these data to our clinical team when ready for clinical decision making. We also describe key limitations of CRM, like balancing out-of-the-box functionality with development flexibility. Among our first group of referred patients, 76% (39/51) preferred email as their communication method, 26/51 (51%) were able to enroll electronically, and 63% of those enrolled (32/51) were able to transmit blood pressure data without phone support.
Conclusion: A CRM platform could improve clinical processes through multiple pathways, including workflow automation, multi-channel communication, and device integration. Future work will examine the operational improvements of this health information technology solution as well as assess clinical outcomes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580734 | PMC |
http://dx.doi.org/10.1055/s-0041-1739195 | DOI Listing |
BMC Health Serv Res
January 2025
Department of Emergency Medicine, University of California, Irvine, Orange, CA, 92868, USA.
Background: Research demonstrates that Point-of-care ultrasound (POCUS) improves clinical outcomes for patients. Improving clinician satisfaction with POCUS should promote utilization into everyday practice, leading to improved clinical outcomes. Despite this benefit, there are still barriers to use including POCUS workflow.
View Article and Find Full Text PDFLab Chip
January 2025
NASCENT Engineering Research Center, The University of Texas at Austin, Austin, Texas 78758, USA.
Despite being a high-resolution separation technique, deterministic lateral displacement (DLD) technology is facing multiple challenges with regard to design, manufacture, and operation of pertinent devices. This work specifically aims at alleviating difficulties associated with design and manufacture of DLD chips. The process of design and production of computer-aided design (CAD) mask layout files that are typically required for computational modeling analysis, optimization, as well as for manufacturing DLD-based micro/nanofluidic chips is complex, time-consuming, and often necessitates a high level of expertise in the field.
View Article and Find Full Text PDFJ Imaging Inform Med
January 2025
University Hospitals Cleveland Medical Center, Case Western Reserve University, 11100 Euclid Avenue, BSH 5056, Cleveland, OH, 44106, USA.
The objective of this study is to implement an actionable incidental findings (AIFs) communication workflow integrated into the electronic health record (EHR) using dictation macros to improve the quality of radiology reports and facilitate delivery of findings to clinicians. The workflow was implemented across an academic multi-hospital health system and used by over 100 radiologists from 12 divisions. Standardized macros were created for different organ systems including the thyroid, lungs, liver, pancreas, spleen, kidney, female reproductive, and others, designed based on the ACR Novel Quality Measure Set.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
Machine learning interatomic potentials (MLIPs) promise quantum-level accuracy at classical force field speeds, but their performance hinges on the quality and diversity of training data. An efficient and fully automated approach to sample chemical reaction space without relying on human intuition, addressing a critical gap in MLIP development is presented. The method combines the speed of tight-binding calculations with selective high-level refinement, generating diverse datasets that capture both equilibrium and reactive regions of potential energy surfaces.
View Article and Find Full Text PDFAnal Chem
January 2025
Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, California 91010, United States.
Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!