Accurately assessing the complex tissue mechanics of cerebral aneurysms (CAs) is critical for elucidating how CAs grow and whether that growth will lead to rupture. The factors that have been implicated in CA progression - blood flow dynamics, immune infiltration, and extracellular matrix remodeling - all occur heterogeneously throughout the CA. Thus, it stands to reason that the mechanical properties of CAs are also spatially heterogeneous. Here, we present a new method for characterizing the mechanical heterogeneity of human CAs using generalized anisotropic inverse mechanics, which uses biaxial stretching experiments and inverse analyses to determine the local Kelvin moduli and principal alignments within the tissue. Using this approach, we find that there is significant mechanical heterogeneity within a single acquired human CA. These results were confirmed using second harmonic generation imaging of the CA's fiber architecture and a correlation was observed. This approach provides a single-step method for determining the complex heterogeneous mechanics of CAs, which has important implications for future identification of metrics that can improve accuracy in prediction risk of rupture.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000519694DOI Listing

Publication Analysis

Top Keywords

mechanical heterogeneity
12
cerebral aneurysms
8
cas
5
characterizing tissue
4
tissue remodeling
4
mechanical
4
remodeling mechanical
4
heterogeneity cerebral
4
aneurysms accurately
4
accurately assessing
4

Similar Publications

Background: Achilles tendinopathy (AT) management can be difficult, given the paucity of effective treatment options and the degenerative nature of the condition. Innovative therapies for Achilles tendinopathy are therefore direly needed. New therapeutic developments predominantly begin with preclinical animal and in vitro studies to understand the effects at the molecular level and to evaluate toxicity.

View Article and Find Full Text PDF

Hydraulic fracturing, which forms complex fracture networks, is a common technique for efficiently exploiting low-permeability conglomerate reservoirs. However, the presence of gravel makes conglomerate highly heterogeneous, endowing the deformation, failure, and internal micro-scale fracture expansion mechanisms with uniqueness. The mechanism of fracture expansion when encountering gravel in conglomerate reservoirs remains unclear, challenging the design and effective implementation of hydraulic fracturing.

View Article and Find Full Text PDF

This study explored the use of mango lignocellulosic kernel biochar (MKB) modified with MnFeO magnetic nanoparticles and a Cu@Zn-BDC metal-organic framework (MOF) (MKB/MnFeO/Cu@Zn-BDC MOF) for tetracycline (TC) removal from aqueous solutions and hospital wastewater. The modified biochar exhibited strong magnetic properties (19.803 emu/g) and a specific surface area of 30.

View Article and Find Full Text PDF

Preparation of anti-shrinkage branched poly (butylene succinate-co-butylene terephthalate)/cellulose nanocrystal foam with excellent degradability and thermal insulation.

Int J Biol Macromol

January 2025

State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:

Branched poly (butylene succinate-co-butylene terephthalate) (BPBST) was synthesized by in-situ polycondensation to enhance the foamability of poly (butylene succinate-co-butylene terephthalate) (PBST) and was blended with cellulose nanocrystals (CNC) to address foam shrinkage. The introduction of 2 wt% CNC increased the crystallization temperature of BPBST from 66.6 °C to 87.

View Article and Find Full Text PDF

The purpose of this work is to evaluate the feasibility of lung imaging using 3D electrical impedance tomography (EIT) during spontaneous breathing trials (SBTs) in patients with acute hypoxic respiratory failure. EIT is a noninvasive, nonionizing, real-time functional imaging technique, suitable for bedside monitoring in critically ill patients. EIT data were collected in 24 mechanically ventilated patients immediately preceding and during a SBT on two rows of 16 electrodes using a simultaneous multicurrent source EIT system for 3D imaging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!