Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Impairments in activities of daily living (ADL) are common clinical symptoms of human Alzheimer's disease (AD). Describing the ADL in AD animal models might provide more insights into the mechanism/treatment of the disease. Here, we demonstrated that the forebrain presenilin 1(Psen1)/presenilin 2 (Psen2) conditional double knockout (DKO) mice exhibited deficits in nest building, marble burying and food burrowing starting at 3 months old and worsening at later ages. At 4 months of age, spontaneous activities in the home cage were also impaired in DKO mice, including physically demanding activities, habituation-like behaviors, and nourishment behaviors during the first two hours in the dark phase. These results indicated that loss of function of Psen1 and Psen2 in mice impaired a series of noncognitive behaviors in the early phase of neurodegeneration. This observation suggests that DKO mice are an ideal model for further mechanistic studies of Psen1 and Psen2 functions in regulating noncognitive behaviors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2021.113652 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!