Radiation exposure in CT imaging leads to increased patient risk. This motivates the pursuit of reduced-dose scanning protocols, in which noise reduction processing is indispensable to warrant clinically acceptable image quality. Convolutional Neural Networks (CNNs) have received significant attention as an alternative for conventional noise reduction and are able to achieve state-of-the art results. However, the internal signal processing in such networks is often unknown, leading to sub-optimal network architectures. The need for better signal preservation and more transparency motivates the use of Wavelet Shrinkage Networks (WSNs), in which the Encoding-Decoding (ED) path is the fixed wavelet frame known as Overcomplete Haar Wavelet Transform (OHWT) and the noise reduction stage is data-driven. In this work, we considerably extend the WSN framework by focusing on three main improvements. First, we simplify the computation of the OHWT that can be easily reproduced. Second, we update the architecture of the shrinkage stage by further incorporating knowledge of conventional wavelet shrinkage methods. Finally, we extensively test its performance and generalization, by comparing it with the RED and FBPConvNet CNNs. Our results show that the proposed architecture achieves similar performance to the reference in terms of MSSIM (0.667, 0.662 and 0.657 for DHSN2, FBPConvNet and RED, respectively) and achieves excellent quality when visualizing patches of clinically important structures. Furthermore, we demonstrate the enhanced generalization and further advantages of the signal flow, by showing two additional potential applications, in which the new DHSN2 is used as regularizer: (1) iterative reconstruction and (2) ground-truth free training of the proposed noise reduction architecture. The presented results prove that the tight integration of signal processing and deep learning leads to simpler models with improved generalization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TIP.2021.3125489 | DOI Listing |
The 18 Workshop on Recent Issues in Bioanalysis (18 WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18 WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Laboratory of Vibration and Noise, Naval University of Engineering, Wuhan 430033, China.
Pulsation noise in the piping system generated by the excitation of the pump source seriously affects the reliability of the pipeline system and mechanical equipment. The active noise control can effectively suppress the low-frequency noise in the liquid-filled pipeline. Active control methods with intrusive secondary sources generally use dynamic pressure sensors or hydrophones to collect signals, which destroy the structure of the pipe.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Computer Engineering, Malatya Turgut Ozal University, 44210 Malatya, Turkey.
The morphological type of the acromion may play a role in the etiopathogenesis of various pathologies, such as shoulder impingement syndrome and rotator cuff disorders. Therefore, it is important to determine the acromion's morphological types accurately and quickly. In this study, it was aimed to detect the acromion shape, which is one of the etiological causes of chronic shoulder disorders that may cause a decrease in work capacity and quality of life, on shoulder MR images by developing a new model for image retrieval in Content-Based Image Retrieval (CBIR) systems.
View Article and Find Full Text PDFHealthcare (Basel)
January 2025
Department of Family Medicine, Supportive Care Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.
Intra-articular (IA) injection therapy, particularly IA hyaluronic acid (HA), is a common treatment for knee osteoarthritis, but it does have limitations. The injection of IA polynucleotide (PN) has emerged as an alternative, potentially offering superior clinical outcomes. This study investigates current practice patterns and the perceived effectiveness of PN among clinicians for treating knee osteoarthritis in the Republic of Korea.
View Article and Find Full Text PDFSci Adv
January 2025
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
The time-resolved detection of mid- to far-infrared electric fields absorbed and emitted by molecules is among the most sensitive spectroscopic approaches and has the potential to transform sensing in fields such as security screening, quality control, and medical diagnostics. However, the sensitivity of the standard detection approach, which relies on encoding the far-infrared electric field into amplitude modulation of a visible or near-infrared probe laser pulse, is limited by the shot noise of the latter. This constraint cannot be overcome without using a quantum resource.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!