AI Article Synopsis

  • Alphaviruses and flaviviruses have similar class II fusion glycoproteins crucial for their assembly and infectivity, specifically noting conservation in the tip of domain II among both virus families.
  • Research on Zika virus identified a novel envelope glycoprotein variant that, while minimally affecting infection in mosquitoes, reduced viral replication in human cells and mice and heightened sensitivity to ammonium chloride.
  • The study further explored mutations in the flavivirus E β-strand c and ij loop, revealing that certain alterations can inhibit the production of infectious Zika and yellow fever viruses, suggesting that structural similarities in these glycoproteins play significant roles in viral infection and could inform antiviral strategies.

Article Abstract

Alphaviruses and flaviviruses have class II fusion glycoproteins that are essential for virion assembly and infectivity. Importantly, the tip of domain II is structurally conserved between the alphavirus and flavivirus fusion proteins, yet whether these structural similarities between virus families translate to functional similarities is unclear. Using evolution of Zika virus (ZIKV), we identified several novel emerging variants, including an envelope glycoprotein variant in β-strand c (V114M) of domain II. We have previously shown that the analogous β-strand c and the ij loop, located in the tip of domain II of the alphavirus E1 glycoprotein, are important for infectivity. This led us to hypothesize that flavivirus E β-strand c also contributes to flavivirus infection. We generated this ZIKV glycoprotein variant and found that while it had little impact on infection in mosquitoes, it reduced replication in human cells and mice and increased virus sensitivity to ammonium chloride, as seen for alphaviruses. In light of these results and given our alphavirus ij loop studies, we mutated a conserved alanine at the tip of the flavivirus ij loop to valine to test its effect on ZIKV infectivity. Interestingly, this mutation inhibited infectious virion production of ZIKV and yellow fever virus, but not West Nile virus. Together, these studies show that shared domains of the alphavirus and flavivirus class II fusion glycoproteins harbor structurally analogous residues that are functionally important and contribute to virus infection Arboviruses are a significant global public health threat, yet there are no antivirals targeting these viruses. This problem is in part due to our lack of knowledge of the molecular mechanisms involved in the arbovirus life cycle. In particular, virus entry and assembly are essential processes in the virus life cycle and steps that can be targeted for the development of antiviral therapies. Therefore, understanding common, fundamental mechanisms used by different arboviruses for entry and assembly is essential. In this study, we show that flavivirus and alphavirus residues located in structurally conserved and analogous regions of the class II fusion proteins contribute to common mechanisms of entry, dissemination, and infectious-virion production. These studies highlight how class II fusion proteins function and provide novel targets for development of antivirals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8791257PMC
http://dx.doi.org/10.1128/JVI.01774-21DOI Listing

Publication Analysis

Top Keywords

class fusion
16
structurally conserved
12
fusion glycoproteins
12
fusion proteins
12
flavivirus alphavirus
8
infectious-virion production
8
alphavirus flavivirus
8
virus
8
glycoprotein variant
8
life cycle
8

Similar Publications

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Westport, CT, USA.

Background: A 73-year-old female with a 3 year history of Alzheimer's disease was treated within the protocol of The Alzheimer's Autism and Cognitive Impairment Stem Cell Treatment Study (ACIST), an IRB approved clinical study registered with clinicaltrials.gov NCT03724136.

Method: The procedure consists of bone marrow aspiration, cell separation using an FDA cleared class 2 device, and intravenous and intranasal administration of the stem cell fraction.

View Article and Find Full Text PDF

The combination of congenital C1 occipitalization and C2-3 non-segmentation (i.e. "sandwich fusion") results in early development of atlantoaxial dislocation (AAD).

View Article and Find Full Text PDF

Purpose: To implement and evaluate deep learning-based methods for the classification of pediatric brain tumors (PBT) in magnetic resonance (MR) data.

Methods: A subset of the "Children's Brain Tumor Network" dataset was retrospectively used ( = 178 subjects, female = 72, male = 102, NA = 4, age range [0.01, 36.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase (ALK)-fusion proteins resulting from chromosomal rearrangements are promising targets for cancer immunotherapy. While ALK-specific CD8+ T cells and epitopes presented on MHC class I have been identified in patients with ALK-positive malignancies, little is known about ALK-specific CD4+ T cells. We screened peripheral blood of ten ALK-positive anaplastic large cell lymphoma (ALK+ALCL) patients in remission and six healthy donors for CD4+ T-cell responses to the whole ALK-fusion protein, nucleophosmin (NPM1)::ALK.

View Article and Find Full Text PDF

Pulmonary arterial hypertension (PAH) is a progressive disease characterized by proliferative remodeling and obliterative narrowing of the pulmonary vasculature. While outcomes have improved with existing treatments targeting 3 main pathways, there remains a critical need for novel therapies that address different and novel mechanisms of PAH. Sotatercept, recently Food and Drug Administration (FDA) approved, is a groundbreaking fusion protein that binds to activin and growth differentiation factors, rebalancing antiproliferative and pro-proliferative signals to reverse remodeling in both the pulmonary vasculature and the right ventricle.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!