Validation of antibodies: Lessons learned from the Common Fund Protein Capture Reagents Program.

Sci Adv

Division of Program Coordination, Planning and Strategic Initiatives, Office of the Director, National Institutes of Health, Bethesda, MD 20892, USA.

Published: November 2021

Large-scale generation of protein capture reagents remains a technical challenge, but their generation is just the beginning. Validation is a critical, iterative process that yields different results for different uses. Independent, community-based validation offers the possibility of transparent data sharing, with use case–specific results made broadly available. This type of resource, which can grow as new validation data are obtained for an expanding group of reagents, provides a community resource that should accompany future reagent-generating efforts. To address a pressing need for antibodies or other reagents that recognize human proteins, the National Institutes of Health Common Fund launched the Protein Capture Reagents Program in 2010 as a pilot to target human transcription factors. Here, we describe lessons learned from this program concerning generation and validation of research reagents, which we believe are generally applicable for future research endeavors working in a similar space.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8580312PMC
http://dx.doi.org/10.1126/sciadv.abl7148DOI Listing

Publication Analysis

Top Keywords

protein capture
12
capture reagents
12
lessons learned
8
common fund
8
reagents program
8
generation validation
8
reagents
6
validation
5
validation antibodies
4
antibodies lessons
4

Similar Publications

The natural vibrational frequencies of biological particles such as viruses and bacteria encode critical information about their mechanical and biological states as they interact with their local environment and undergo structural evolution. However, detecting and tracking these vibrations within a biological context at the single particle level has remained elusive. In this study, we track the vibrational motions of single, unlabeled virus particles under ambient conditions using ultrafast spectroscopy.

View Article and Find Full Text PDF

Epidermal melanocytes form synaptic-like contacts with cutaneous nerve fibers, but the functional outcome of these connections remains elusive. In this pilot study we used our fully humanized re-innervated skin organ culture model to investigate melanocyte-nerve fiber interactions in UV-B-induced melanogenesis. UV-B-irradiation significantly enhanced melanin content and tyrosinase activity in re-innervated skin compared to non-innervated controls, indicating that neuronal presence is essential for exacerbating pigmentation upon UV-B irradiation in long-term culture.

View Article and Find Full Text PDF

A 77-year-old man was referred to our department because of macrohematuria, oliguria, and a serum creatinine level of 2.47 mg/dL during boron neutron capture therapy (BNCT) for oropharyngeal cancer. At baseline, his creatinine level had been 0.

View Article and Find Full Text PDF

Thermo-sensitive polycaprolactone coacervates for preventing protein aggregation under thermal stress.

J Mater Chem B

January 2025

Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.

Inspired from heat shock proteins (HSPs), a thermo-sensitive coacervate-forming polycaprolactone (CPCL) was designed as a natural chaperone mimic to protect proteins from thermal stress. Unlike the coil-globule polymers of poly(-isopropyl acrylamide) (PNIPAM), the as-designed CPCL underwent a partial dehydration during heating, characterizing it as a coacervate-forming polymer. With its ability to transform between the coil and coacervate states in response to temperature, theCPCL spontaneously captured and released targeted proteins, thereby behaving like a natural chaperone of HSPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!