Structure-Dependent Accessibility of Phonon-Coupled Radiative Relaxation Pathways Probed by X-ray-Excited Optical Luminescence.

J Phys Chem Lett

Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States.

Published: November 2021

Rare-earth scheelites represent a diverse family of compounds with multiple degrees of freedom, which enables the incorporation of a wide range of lanthanide color centers. Precise positioning of quantum objects is attainable by the choice of alkali cations and lattice connectivity of polyanion units. Herein, we report the structure-dependent energy transfer and lattice coupling of optical transitions in La- and Dy-containing scheelite-type double and quadruple molybdates NaLaDy(MoO) and NaLaDy(MoO). X-ray excitation of La core states generates excited-state electron-hole pairs, which, upon thermalizing across interconnected REO polyhedra in double molybdates, activate a phonon-coupled excited state of Dy. A pronounced luminescence band is observed corresponding to optical cooling of the lattice upon preferential radiative relaxation from a "hot" state. In contrast, combined X-ray absorption near-edge structure and X-ray-excited optical luminescence studies reveal that such a lattice coupling mechanism is inaccessible in quadruple molybdates with a greater separation of La-Dy centers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.1c03103DOI Listing

Publication Analysis

Top Keywords

radiative relaxation
8
x-ray-excited optical
8
optical luminescence
8
lattice coupling
8
quadruple molybdates
8
structure-dependent accessibility
4
accessibility phonon-coupled
4
phonon-coupled radiative
4
relaxation pathways
4
pathways probed
4

Similar Publications

Interlayer excitons (IXs) in the heterostructure of monolayer transition metal dichalcogenides (TMDs) are considered as a promising platform to study fundamental exciton physics and for potential applications of next generation optoelectronic devices. The IXs trapped in the moiré potential in a twisted monolayer TMD heterostructure such as MoSe/WSe form zero-dimensional (0D) moiré excitons. Introducing an atomically thin insulating layer between TMD monolayers in a twisted heterostructure would modulate the moiré potential landscape, thereby tuning 0D IXs into 2D IXs.

View Article and Find Full Text PDF

The ability to convert light to higher energies through triplet-triplet annihilation upconversion (TTA-UC) is attractive for a range of applications including solar energy harvesting, bioimaging and anti-counterfeiting. Practical applications require integration of the TTA-UC chromophores within a suitable host, which leads to a compromise between the high upconversion efficiencies achievable in liquids and the durability of solids. Herein, we present a series of methacrylate copolymers as TTA-UC hosts, in which the glass transition temperature ( ), and hence upconversion efficiency can be tuned by varying the co-monomer ratios (-hexyl methacrylate (HMA) and 2,2,2-trifluoroethyl methacrylate (TFEMA)).

View Article and Find Full Text PDF

Elucidating Manganese Single-Atom Doping: Strategies for Fluorescence Enhancement in Water-Soluble Red-Emitting Carbon Dots and Applications for FL/MR Dual Mode Imaging.

Adv Sci (Weinh)

January 2025

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, China.

The absence of the enhancement of fluorescence in carbon dots (CDs) through doping with transition metal atoms (TMAs) hinders the advancement of multi-modal bio-imaging CDs with high photoluminescence quantum yield (PLQY). Herein, Mn-atomically-doped R-CDs (R-Mn-CDs) with a high PLQY of 41.3% in water is presented, enabling efficient in vivo dual-mode fluorescence/magnetic resonance (MR) imaging.

View Article and Find Full Text PDF

QM/MM Calculations on Excited-State Proton Transfer and Photoisomerization of a Red Fluorescent Protein mKeima with Large Stokes Shift.

Biochemistry

January 2025

Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.

Large Stokes shift red fluorescent proteins (LSS-RFPs) are of growing interest for multicolor bioimaging applications. However, their photochemical mechanisms are not fully understood. Here, we employed the QM(XDW-CASPT2//CASSCF)/MM method to investigate the excited-state proton transfer and photoisomerization processes of the LSS-RFP mKeima starting from its cis neutral isomer.

View Article and Find Full Text PDF

Highly efficient NIR-Ⅱ window photoluminescence up to 1000  nm using heteroatomic fused-ring radicals.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-functional Materials and Chemistry, Changchun 130022, China; State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China. Electronic address:

Neutral radicals have the potential to construct pure organic light-emitting diodes (OLEDs) with internal quantum efficiencies reaching 100%. However, neutral radical luminescent materials with emission wavelengths in the second near-infrared (NIR-II) window are rare. Herein, a serial of neutral donor-bridge-acceptor (D-π-A) type radical derivatives are investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!