The present study investigated the effect of octenyl succinic anhydride (OSA) modification of starch on the formation of starch-lipid complexes. The complexing index (CI) showed that native maize starch (NMS) formed more complexes with monopalmityl glycerol (MPG) than with palmitic acid (PA), whereas dipalmityl glycerol (DPG) was not effective in forming complexes with NMS. After OSA modification, the complexation between OSA-starch and lipids was greatly enhanced, especially for PA and DPG, and the CI values increased from 79.6 to 93.3% for OSA-starch-PA and from 80.3 to 93.2% for OSA-starch-DPG complexes with increasing DS of OSA-starch. Structural analyses showed that OSA-starch-lipid complexes had higher degrees of long- and short-range molecular orders than the corresponding NMS-lipid complexes. This study showed for the first time that DPG can form complexes with OSA-starch, which was attributed to the increased dispersion of DPG in water by the emulsifying ability of OSA-starch. The finding is of great significance for a better understanding of the formation of starch-lipid complexes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.1c05816 | DOI Listing |
Plant Foods Hum Nutr
March 2025
Agricultural Faculty, Food Engineering Department, Selçuk University, Konya, 42130, Türkiye.
This study aimed to investigate the enzymatic hydrolysis of sunflower, olive, and flaxseed oils and its impact on starch complexation and properties. Enzymatic treatment significantly increased free fatty acid content to 45% without any significant change in fatty acid composition and oxidation precursors. The complexation of high amylose maize starch with hydrolysed flaxseed oil was effective in limiting starch digestion.
View Article and Find Full Text PDFFood Chem
February 2025
College of Food Science, Southwest University, Chinese-Hungarian Cooperative Research Centre for Food Science, Chongqing 400715, China. Electronic address:
Starch-lipid complexes with functional properties have gained extensive attention; however, little attention has been paid to how oleic acid-based lipid types and thermomechanical treatment affect the functional characteristics of starch. This study investigated the effects of five oleic acid-based lipids (oleic acid, monoolein, diolein, triolein, and rapeseed oil) and thermomechanical treatment on the structural and physicochemical properties of wheat starch. The crystal patterns and complexing indices showed that thermomechanical treatment promoted the formation of oleic acid, monoolein, and diolein V-type starch-lipid complexes with an intact granular structure, whereas triolein and rapeseed oil formed complexes with starch.
View Article and Find Full Text PDFFoods
January 2025
Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan.
This study investigates the effect of ultrasonic-assisted preparation on the structural and physicochemical properties of water caltrop starch-palmitic acid complexes as a function of ultrasound intensity and treatment time. All samples exhibited the characteristic birefringence of starch-lipid complexes under the polarized microscope, and flake-like and irregular structure under scanning electron microscope (SEM), indicating the formation of complexes through ultrasonic-assisted preparation. X-ray diffraction pattern further confirmed the transition from the original A-type structure for native starch to V-type structure for starch-lipid complexes, and the relative crystallinity of starch-lipid complexes increased as the ultrasound intensity and treatment time increased.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China.
The amylolytic susceptibility of starch-lipid complexes with different forms of crystallites has been studied extensively, but the fermentation properties of these complexes remain little understood. Hence, the fecal fermentation properties of starch-lipid complexes with V-type and V-type crystallites were investigated in the present study. Compared to V-type complexes, fermentation of V-type complexes caused more severe disruption to the crystallites and resulted in greater acid, reducing sugar, and short-chain fatty acids (SCFAs) production.
View Article and Find Full Text PDFFood Chem
April 2025
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China; Zhejiang University-Wuxi Xishan Joint Modern Agricultural Research Center, Wuxi 214100, China. Electronic address:
To investigate the impact of safflower seed oil on the structural and digestive properties of complexes formed by fatty acids of varying chain lengths with maize starch, the starch-fatty acid ternary complexes were prepared by a hydrothermal method. The results indicated that safflower seed oil inhibited the complexation of relatively short-chain fatty acids (C10:0, C12:0, and C16:0) with starch, and promoted the complexation of long-chain fatty acids (C18:0). Intriguingly, safflower seed oil showed no significant impact on the formation of linoleic acid (C18:2) complexes, suggesting selective interactions within the starch-fatty acid complexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!