Rainfall is generally partitioned into throughfall, stemflow, and interception in ecosystems. Stemflow variability can affect the hydrology, ecology, and soil chemistry patterns. However, the influence of canopy structure and rainfall characteristics on stemflow production in sugarcane plantations which are important for renewable energy production remain poorly understood. By using funnels attached to the sugarcane stems, the present study determined the stemflow amount during the period of sugarcane growth and its relationship with plant development. Approximately, 14% of gross rainfall reached the soil as stemflow, and the funneling ratios was 60. In general, it was observed a positive relationship between stemflow rates with both leaf area index and plant height. This was attributed to an increasing number of acute branching angles of the sugarcane leaves as well as high stem tillering and density. However, at the end of growth cycle, stemflow rate was lower than in previous periods which can be attributed to changes in sugarcane canopy such as stems inclination and lodging, reducing the effectiveness of water conveyance along the stem. Our study showed the need to include stemflow to better understand the hydrology of sugarcane plantations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10661-021-09570-5 | DOI Listing |
Tree Physiol
December 2024
Department of Natural Resources and Environmental Science, University of Nevada, Reno, 1664 North Virginia Street, Reno, NV 89557, USA.
It has been postulated that stemflow, precipitation that flows from plant crowns down along branches and stems to soils, benefits plants that generate it because it increases plant-available soil water near the base of the plant; however, little direct evidence supports this postulation. Were plants' crowns to preferentially route water to their roots, woody plants with large canopies could benefit. For example, piñon and juniper tree encroachment into sagebrush steppe ecosystems could be facilitated by intercepted precipitation routed to tree roots as stemflow, hypothetically reducing water available for shrubs and grasses.
View Article and Find Full Text PDFFront Plant Sci
November 2024
International Joint Center for Terrestrial Biodiversity around South China Sea of Hainan Province, Hainan University, Haikou, China.
Introduction: Epiphytic plants are abundant in rainforests and often serve as traps for litter and dust falling from the canopy. As it accumulates, this material can form nutrient rich soils, which are likely involved in local nutrient cycling and ecological processes.
Methods: To explore spatial and temporal variation in the influence of suspended soils on local nutrient cycles, we compared the physical, chemical and biological properties of suspended soils from the locally-dominant epiphytic Bird's nest fern ( L.
Ying Yong Sheng Tai Xue Bao
June 2024
1 College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China.
Tree Physiol
September 2024
Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, TN, Italy.
Atmospheric nitrogen (N) deposition has notably increased since the industrial revolution, doubling N inputs to terrestrial ecosystems. This could mitigate N limitations in forests, potentially enhancing productivity and carbon sequestration. However, excessive N can lead to forest N saturation, causing issues like soil acidification, nutrient imbalances, biodiversity loss, increased tree mortality and a potential net greenhouse gas emission.
View Article and Find Full Text PDFSci Total Environ
October 2024
Yellow River Delta Modern Agricultural Engineering Laboratory, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China. Electronic address:
Numerous shelter forests have been established to combat desertification in the Mu Us Sandy Land, China. Shelter forests modify the characteristics of the underlying surface and affect the regional water cycle by altering rainfall partitioning. Understanding the rainfall partitioning process and its controlling factors for indigenous and exotic species is crucial for vegetation restoration and sustainable soil water management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!