Background: Interest in digital technologies in the health care sector is growing and can be a way to reduce the burden on professional caregivers while helping people to become more independent. Social robots are regarded as a special form of technology that can be usefully applied in professional caregiving with the potential to focus on interpersonal contact. While implementation is progressing slowly, a debate on the concepts and applications of social robots in future care is necessary.
Objective: In addition to existing studies with a focus on societal attitudes toward social robots, there is a need to understand the views of professional caregivers and patients. This study used desired future scenarios to collate the perspectives of experts and analyze the significance for developing the place of social robots in care.
Methods: In February 2020, an expert workshop was held with 88 participants (health professionals and educators; [PhD] students of medicine, health care, professional care, and technology; patient advocates; software developers; government representatives; and research fellows) from Austria, Germany, and Switzerland. Using the scenario methodology, the possibilities of analog professional care (Analog Care), fully robotic professional care (Robotic Care), teams of robots and professional caregivers (Deep Care), and professional caregivers supported by robots (Smart Care) were discussed. The scenarios were used as a stimulus for the development of ideas about future professional caregiving. The discussion was evaluated using qualitative content analysis.
Results: The majority of the experts were in favor of care in which people are supported by technology (Deep Care) and developed similar scenarios with a focus on dignity-centeredness. The discussions then focused on the steps necessary for its implementation, highlighting a strong need for the development of eHealth competence in society, a change in the training of professional caregivers, and cross-sectoral concepts. The experts also saw user acceptance as crucial to the use of robotics. This involves the acceptance of both professional caregivers and care recipients.
Conclusions: The literature review and subsequent workshop revealed how decision-making about the value of social robots depends on personal characteristics related to experience and values. There is therefore a strong need to recognize individual perspectives of care before social robots become an integrated part of care in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8663608 | PMC |
http://dx.doi.org/10.2196/20046 | DOI Listing |
Am J Case Rep
January 2025
Department of Orthopedic Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
BACKGROUND The management of unstable atlas fractures remains a subject of ongoing debate and controversy. The conservative surgical treatment commonly involves fusion, resulting in severe loss of cervical spine mobility, and a large incisions and extensive tissue dissection are required. We aim to introduce a novel concept and surgical approach for treating atlas fracture, one that involves minimizing trauma while maintaining mobility of the upper cervical spine without resorting to fusion.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
Metamaterials are pushing the limits of traditional materials and are fascinating frontiers in scientific innovation. Mechanical metamaterials (MMs) are a category of metamaterials that display properties and performances that cannot be realized in conventional materials. Exploring the mechanical properties and various aspects of vibration and damping control is becoming a crucial research area.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Biomedical and Robotics Engineering, Incheon National University, Incheon 22012, Republic of Korea.
With the rise of modern healthcare monitoring, heart rate (HR) estimation using remote photoplethysmography (rPPG) has gained attention for its non-contact, continuous tracking capabilities. However, most HR estimation methods rely on stable, fixed sampling intervals, while practical image capture often involves irregular frame rates and missing data, leading to inaccuracies in HR measurements. This study addresses these issues by introducing low-complexity timing correction methods, including linear, cubic, and filter interpolation, to improve HR estimation from rPPG signals under conditions of irregular sampling and data loss.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
As advancements in autonomous underwater vehicle (AUV) technology unfold, the role of underwater wireless sensor networks (UWSNs) is becoming increasingly pivotal. However, the high energy consumption in these networks can significantly reduce their operational lifespan, while latency issues can impair overall network performance. To address these challenges, a novel mixed packet forwarding strategy is developed, which incorporates a wakeup threshold and a dynamically adjusted access probability for the cluster head (CH).
View Article and Find Full Text PDFSensors (Basel)
January 2025
The 54th Research Institute, China Electronics Technology Group Corporation, College of Signal and Information Processing, Shijiazhuang 050081, China.
The multi-sensor fusion, such as LiDAR and camera-based 3D object detection, is a key technology in autonomous driving and robotics. However, traditional 3D detection models are limited to recognizing predefined categories and struggle with unknown or novel objects. Given the complexity of real-world environments, research into open-vocabulary 3D object detection is essential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!