Background: Brain-derived neurotrophic factor (BDNF) plays an important role in brain development by regulating multiple pathways within the central nervous system. In the Human Biomonitoring for Europe Project (HBM4EU), this neurotrophin is being implemented as a novel effect biomarker to evaluate the potential threats of environmental chemicals on neurodevelopment.
Objectives: To explore the relationships among exposure to environmental metals, BDNF biomarkers at two levels of biological complexity, and behavioral function in adolescent males.
Methods: Data were gathered from 125 adolescents on: spot urine sample total concentrations of the neurotoxic metal(oid)s arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb); serum BDNF protein concentrations; and concurrent behavioral functioning according to the Child Behavior Check List (CBCL/6-18). In 113 of the participants, information was also collected on blood BDNF DNA methylation at six CpGs. Associations were evaluated by multivariate linear regression analysis adjusted for confounders.
Results: As, Cd, Hg, and Pb were detected in 100%, 98.5%, 97.0%, and 89.5% of urine samples, respectively. Median serum BDNF concentration was 32.6 ng/mL, and total percentage of BDNF gene methylation was 3.8%. In the adjusted models, urinary As was non-linearly associated with more internalizing problems and Cd with more externalizing behaviors. The percentage BDNF DNA methylation at CPGs #5 and the mean percentage CpG methylation increased across As tertiles (p-trend = 0.04 and 0.03, respectively), while 2nd tertile and 3rd tertile of Cd concentrations were associated with lower serum BDNF and higher CpG3 methylation percentage. Additionally, when BDNF was categorized in tertiles, serum BDNF at the 3rd tertile was associated with fewer behavioral problems, particularly withdrawn (p-trend = 0.04), social problems (p-trend = 0.12), and thought problems (p-trend = 0.04).
Conclusion: Exposure to As and Cd was associated with BDNF gene DNA methylation BDNF gene and serum BDNF, respectively. Associations with DNA methylation may be attributable to a higher variability over time in circulating BDNF concentrations than in the methylation status of this gene. Caution should be taken when interpreting the results relating postnatal Pb and Hg to behavioral functioning. Further studies are needed to verify these findings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijheh.2021.113877 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!