Cordyceps militaris is a well-known traditional Chinese medicine. Studies have demonstrated that the polysaccharides of C. militaris have various bioactivities. However, their mechanisms of action remain unclear. We previously purified a water-soluble polysaccharide CM1 from C. militaris and found that it has a cholesterol efflux improving capacity. This study further investigates the effect of CM1 in anti-atherosclerosis and its underlying mechanism in apolipoprotein E-deficient mice. Our data indicated that CM1 significantly decreased the total cholesterol and triglyceride in the plasma of mice, and decreased lipid deposition and formation of atherosclerotic plaque in a dose-dependent manner. Integrated bioinformatics analysis revealed that CM1 interacted with multiple signaling pathways, including those involved in lipid metabolism, inflammatory response, oxidoreductase activity and fluid shear stress, to exert its anti-atherosclerotic effect. Molecular technology analysis showed that CM1 enhanced the expression of proteins involved in lipid metabolism, reduced the expression of intercellular adhesion molecule-1 and tumor necrosis factor-α in the aorta, and decreased the content of oxidative products by enhancing the activities of antioxidant enzymes. Microarray analysis and biochemical data indicated that CM1 can improve lipid metabolism, reduce inflammation and oxidative stress. Taken together, CM1 could be used for the treatment of hyperlipidemia and atherosclerotic cardiovascular diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.10.175 | DOI Listing |
Mol Cell Biochem
January 2025
Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, P.O. Box: 14115-154, Tehran, Iran.
Ferroptosis is a novel, iron-dependent form of non-apoptotic cell death characterized by the accumulation of lipid reactive oxygen species (ROS) and mitochondrial shrinkage. It is closely associated with the onset and progression of various diseases, especially cancer, at all stages, making it a key focus of research for developing therapeutic strategies. Numerous studies have explored the role of microRNAs (miRNAs) in regulating ferroptosis by modulating the expression of critical genes involved in iron metabolism and lipid peroxidation.
View Article and Find Full Text PDFNeuromolecular Med
January 2025
Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.
The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.
View Article and Find Full Text PDFJ Med Virol
February 2025
Division of Gastroenterology and Hepatology, Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, South Korea.
While entecavir (ETV) and tenofovir disoproxil fumarate (TDF) effectively manage chronic hepatitis B, their long-term effects on lipid metabolism and cardiovascular outcomes remain unclear. This study compares the impact of ETV, TDF, and treatment-naïve (control group) on hyperlipidemia and major adverse cardiac events (MACE) in people living with chronic hepatitis B (PLWHB). We used claim data from the South Korean National Health Insurance Service.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Division of Molecular Neurogenetics, German Cancer Research Center (DKFZ);
Glioblastoma (GBM) is described as a group of highly malignant primary brain tumors and stands as one of the most lethal malignancies. The genetic and cellular characteristics of GBM have been a focal point of ongoing research, revealing that it is a group of heterogeneous diseases with variations in RNA expression, DNA methylation, or cellular composition. Despite the wealth of molecular data available, the lack of transferable pre-clinic models has limited the application of this information to disease classification rather than treatment stratification.
View Article and Find Full Text PDFPhysiol Plant
January 2025
College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China.
The gene GAD1 encodes a glutamate decarboxylase, which is a rate-limiting enzyme for the biosynthesis of endogenous γ-aminobutyrate acid (GABA), but a potential role of GAD1 in regulating cadmium (Cd) tolerance needs to be further elucidated in plants. The objective of this study was to investigate Cd tolerance of creeping bentgrass (Agrostis stolonifera) and transgenic yeast (Saccharomyces cerevisiae) or Arabidopsis thaliana overexpressing AsGAD1. The Cd-tolerant creeping bentgrass cultivar LOFTSL-93 accumulated more endogenous GABA in relation to a significant upregulation of AsGAD1 in leaf and root than the Cd-sensitive W66569 in response to Cd stress.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!