Reprint of: Automated geometric aberration correction for large-angle illumination STEM.

Ultramicroscopy

Institute of Engineering Innovation, University of Tokyo, Bunkyo, Tokyo, 113-8656, Japan; Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya, Aichi 456-8587, Japan.

Published: December 2021

Depth resolution in scanning transmission electron microscopy (STEM) is physically limited by the illumination angle. In recent notable progress on aberration correction technology, the illumination angle is significantly improved to be larger than 60 milliradians, which is 2 or 3 times larger than those in the previous generation. However, for three-dimensional depth sectioning with the large illumination angles, it is prerequisite to ultimately minimize lower orders of aberrations such as 2- and 3-fold astigmatisms and axial coma. Here, we demonstrate a live aberration correction using atomic-resolution STEM images rather than Ronchigram images. The present method could save the required time for aberration correction, and moreover, it is possible to build up a fully automated program. We demonstrate the method should be useful not only for axial depth sectioning but also phase imaging in STEM including differential phase-contrast imaging.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultramic.2021.113410DOI Listing

Publication Analysis

Top Keywords

aberration correction
16
illumination angle
8
depth sectioning
8
reprint automated
4
automated geometric
4
aberration
4
geometric aberration
4
correction
4
correction large-angle
4
illumination
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!