The capability of "dish" and "ingredient in dish" modeling to reduce the number of nutrition imbalances in bioregenerative life support diet was compared. Masses of dishes were assumed to be the independent variables in the 'dish' model, while in the 'ingredient in dish' model the independent variables were the total masses of the ingredients in a one-day menu and masses of ingredients in the dishes. The objective function in both models was minimization of discrepancy between the calculated nutrition intakes and the daily nutrition requirements of NASA for long duration space missions. Comparing of two models was carried out for the case of a one-day diet containing 12 dishes and 32 ingredients. It was established that the diet simulation by 'dish' model brings 6 nutrition imbalances. The use of the 'ingredient in dish' modeling has helped to reduce the number of nutrition imbalances to 3, namely, an excess of iron, vitamin A and saturated fat. Obstacles to the fulfillment of all nutrition requirements were the nomenclature and masses of ingredients in the dish recipes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lssr.2020.07.004DOI Listing

Publication Analysis

Top Keywords

nutrition requirements
12
nutrition imbalances
12
masses ingredients
12
bioregenerative life
8
life support
8
reduce number
8
number nutrition
8
independent variables
8
'dish' model
8
'ingredient dish'
8

Similar Publications

Background: During lactation, maternal requirements for many nutrients increase due to the physiological demands of breast milk production, reflected in dietary recommendations. BMI is negatively associated with dietary quality postpartum, and 40% of women in Norway have pre-pregnancy overweight and obesity. Currently, there is limited data on dietary intake among lactating women in Norway and whether they meet nutritional requirements.

View Article and Find Full Text PDF

The impact of a tailored nutrition intervention delivered for the duration of hospitalisation on daily energy delivery for patients with critical illness (INTENT): a phase II randomised controlled trial.

Crit Care

January 2025

Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Department of Epidemiology and Preventative Medicine, Monash University, 553 St Kilda Road, Melbourne, VIC, Australia.

Background: Nutrition interventions commenced in ICU and continued through to hospital discharge have not been definitively tested in critical care to date. To commence a program of research, we aimed to determine if a tailored nutrition intervention delivered for the duration of hospitalisation delivers more energy than usual care to patients initially admitted to the Intensive Care Unit (ICU).

Methods: A multicentre, unblinded, parallel-group, phase II trial was conducted in twenty-two hospitals in Australia and New Zealand.

View Article and Find Full Text PDF

Limited research has explored the connection between consuming dietary probiotics in the diet and cancer-related deaths. This study aimed to examine how the intake levels of three different groups of dietary probiotics are associated with the risk of dying from cancer in a representative sample of adults in the United States. Using data from the USDA Food Survey Nutrient Database, researchers categorized foods based on their microbial levels as low (10 CFU/g), medium (10-10 CFU/g), or high (> 10 CFU/g).

View Article and Find Full Text PDF

[Micronutrients intake in patients with refractory epilepsy with ketogenic diet treatment].

Andes Pediatr

October 2024

Facultad de Medicina, Departamento de Gastroenterología y Nutrición Pediátrica, Pontificia Universidad Católica de Chile, Santiago, Chile.

Unlabelled: The Ketogenic Diet (KD) is a non-pharmacological strategy for drug-resistant epilepsy (DRE) and inborn errors of metabolism (Glut-1 deficiency) management. KD is characterized by being restrictive, affecting micronutrient intake. There are different modalities of KD in which food intake and nutritional deficiencies vary.

View Article and Find Full Text PDF

Subpopulation-specific gene expression in uncovers distinct metabolic adaptations to wine fermentation.

Curr Res Food Sci

December 2024

Department of Genetics, Physiology and Microbiology, Unit of Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040, Madrid, Spain.

Gene expression is the first step in translating genetic information into quantifiable traits. This study analysed gene expression in 23 strains across six subpopulations of , shaped by anthropization, under winemaking conditions to understand the impact of adaptation on transcriptomic profiles and fermentative performance, particularly regarding lactic acid production. Understanding the gene expression differences linked to lactic acid production could allow a more rational address of biological acidification while optimizing yeast-specific nutritional requirements during fermentation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!