AI Article Synopsis

  • Studies on antibody responses from different COVID-19 vaccines are limited, but crucial for improving vaccine strategies like selection and dosage.
  • This research focuses on evaluating IgG antibody responses after vaccination with BNT162b2 and mRNA-1273, using data from healthcare professionals.
  • Results show that while both vaccines effectively induced antibody responses, mRNA-1273 produced significantly higher IgG levels at various time points compared to BNT162b2, suggesting potential differences in effectiveness based on vaccine brand.

Article Abstract

Studies examining antibody responses by vaccine brand are lacking and may be informative for optimizing vaccine selection, dosage, and regimens. The purpose of this study is to assess IgG antibody responses following immunization with BNT162b2 (30 μg mRNA) and mRNA-1273 (100 μg mRNA) vaccines. A cohort of clinicians at a nonprofit organization is being assessed clinically and serologically following immunization with BNT162b2 or mRNA-1273. IgG responses were measured at the Remington Laboratory by an IgG assay against the SARS-CoV-2 spike protein-receptor binding domain. Mixed-effect linear (MEL) regression modeling was used to examine whether the SARS-CoV-2 IgG level differed by vaccine brand, dosage, or number of days since vaccination. Among 532 SARS-CoV-2 seronegative participants, 530 (99.6%) seroconverted with either vaccine. After adjustments for age and gender, MEL regression modeling revealed that the average IgG antibody level increased after the second dose compared to the first dose ( < 0.001). Overall, titers peaked at week 6 for both vaccines. Titers were significantly higher for the mRNA-1273 vaccine on days 14 to 20 ( < 0.05), 42 to 48 ( < 0.01), 70 to 76 ( < 0.05), and 77 to 83 ( < 0.05) and higher for the BNT162b2 vaccine on days 28 to 34 ( < 0.001). In two participants taking immunosuppressive drugs, the SARS-CoV-2 IgG antibody response remained negative. mRNA-1273 elicited higher IgG antibody responses than BNT162b2, possibly due to the higher S-protein delivery. Prospective clinical and serological follow-up of defined cohorts such as this may prove useful in determining antibody protection and whether differences in antibody kinetics between the vaccines have manufacturing relevance and clinical significance. SARS-CoV-2 vaccines using the mRNA platform have become one of the most powerful tools to overcome the COVID-19 pandemic. mRNA vaccines enable human cells to produce and present the virus spike protein to their immune system, leading to protection from severe illness. Two mRNA vaccines have been widely implemented, mRNA-1273 (Moderna) and BNT162b2 (Pfizer/BioNTech). We found that, following the second dose, spike protein antibodies were higher with mRNA-1273 than with BNT162b2. This is biologically plausible, since mRNA-1273 delivers a larger amount of mRNA (100 μg mRNA) than BNT162b2 (30 μg mRNA), which is translated into spike protein. This difference may need to be urgently translated into changes in the manufacturing process and dose regimens of these vaccines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579939PMC
http://dx.doi.org/10.1128/Spectrum.01162-21DOI Listing

Publication Analysis

Top Keywords

igg antibody
12
antibody responses
12
bnt162b2 mrna-1273
8
vaccine brand
8
immunization bnt162b2
8
mel regression
8
regression modeling
8
igg
5
differences igg
4
antibody
4

Similar Publications

Expansion of atypical memory B cells (aMBCs) was demonstrated in malaria-exposed individuals. To date, the generation of P. vivax-specific aMBCs and their function in protective humoral immune responses is unknown.

View Article and Find Full Text PDF

Phenomenological Modeling of Antibody Response from Vaccine Strain Composition.

Antibodies (Basel)

January 2025

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.

The elicitation of broadly neutralizing antibodies (bnAbs) is a major goal of vaccine design for highly mutable pathogens, such as influenza, HIV, and coronavirus. Although many rational vaccine design strategies for eliciting bnAbs have been devised, their efficacies need to be evaluated in preclinical animal models and in clinical trials. To improve outcomes for such vaccines, it would be useful to develop methods that can predict vaccine efficacies against arbitrary pathogen variants.

View Article and Find Full Text PDF

A comprehensive strategy, including spectroscopic, molecular simulation, proteomics, and bioinformatics techniques, was employed to investigate a novel triazole, 5-(4-methoxyphenyl)-1-phenyl-1H-1,2,3-triazole, its interactions with high-abundance blood proteins, and identification of low-abundance proteins. The binding constants and thermodynamic parameters of the triazole to two high-abundance blood globular proteins, human serum albumin, and human immunoglobulin G (HIgG), were obtained by spectroscopic techniques and computational chemistry. The two-dimensional gel electrophoresis in combination with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was employed to isolate and identify differentially expressed low-abundance proteins in human blood serum samples following exposure to the triazole.

View Article and Find Full Text PDF

Protective or limited? Maternal antibodies and RSV-associated lower respiratory tract infection in hospitalized infants aged 28-90 days.

Front Immunol

January 2025

Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.

Background: Respiratory syncytial virus (RSV) is a major cause of severe health problems in newborns and young children. The protective role and limitations of serum maternal RSV antibodies in infants under 3 months remain controversial.

Methods: A two-center prospective study from 2020 to 2023 recruited infants (n=286) admitted to the respiratory departments of two children's hospitals in southwestern and southeastern China during RSV epidemic.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease, characterized by impaired wound repair, tissue remodeling and fibrosis. Immune system may participate in the development and progression of the disease as indicated by altered activity in IPF sufferers. This study investigates the immune response to the BNT162b2 COVID-19 vaccine in patients with IPF compared to healthy controls, with a particular focus on evaluation of antibody responses, interferon-gamma release, cytokine profiling and a broad panel of immune cell subpopulations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!