Respiratory tract infections (RTIs) are ubiquitous among children in the community. A prospective observational study was performed to evaluate the diagnostic performance and quality of at-home parent-collected (PC) nasal and saliva swab samples, compared to nurse-collected (NC) swab samples, from children with RTI symptoms. Children with RTI symptoms were swabbed at home on the same day by a parent and a nurse. We compared the performance of PC swab samples as the test with NC swab samples as the reference for the detection of respiratory pathogen gene targets by reverse transcriptase PCR, with quality assessment using a human gene. PC and NC paired nasal and saliva swab samples were collected from 91 and 92 children, respectively. Performance and interrater agreement (Cohen's κ) of PC versus NC nasal swab samples for viruses combined showed sensitivity of 91.6% (95% confidence interval [CI], 85.47 to 95.73%) and κ of 0.84 (95% CI, 0.79 to 0.88), respectively; the respective values for bacteria combined were 91.4% (95% CI, 86.85 to 94.87%) and κ of 0.85 (95% CI, 0.80 to 0.89). In saliva samples, viral and bacterial sensitivities were lower at 69.0% (95% CI, 57.47 to 79.76%) and 78.1% (95% CI, 71.60 to 83.76%), as were κ values at 0.64 (95% CI, 0.53 to 0.72) and 0.70 (95% CI, 0.65 to 0.76), respectively. Quality assessment for human biological material (18S rRNA) indicated perfect interrater agreement. At-home PC nasal swab samples performed comparably to NC swab samples, whereas PC saliva swab samples lacked sensitivity for the detection of respiratory microbes. RTIs are ubiquitous among children. Diagnosis involves a swab sample being taken by a health professional, which places a considerable burden on community health care systems, given the number of cases involved. The coronavirus disease 2019 (COVID-19) pandemic has seen an increase in the at-home self-collection of upper respiratory tract swab samples without the involvement of health professionals. It is advised that parents conduct or supervise swabbing of children. Surprisingly, few studies have addressed the quality of PC swab samples for subsequent identification of respiratory pathogens. We compared NC and PC nasal and saliva swab samples taken from the same child with RTI symptoms, for detection of respiratory pathogens. The PC nasal swab samples performed comparably to NC samples, whereas saliva swab samples lacked sensitivity for the detection of respiratory microbes. Collection of swab samples by parents would greatly reduce the burden on community nurses without reducing the effectiveness of diagnoses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579848PMC
http://dx.doi.org/10.1128/Spectrum.00164-21DOI Listing

Publication Analysis

Top Keywords

swab samples
68
saliva swab
24
detection respiratory
20
samples
19
swab
18
nasal saliva
16
rti symptoms
12
nasal swab
12
parent-collected nasal
8
samples compared
8

Similar Publications

Epidemiological and Molecular Investigation of Feline Panleukopenia Virus Infection in China.

Viruses

December 2024

Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.

The feline panleukopenia virus (FPV) is a highly contagious virus that affects cats worldwide, characterized by leukopenia, high temperature and diarrhea. Recently, the continuous prevalence and variation of FPV have attracted widespread concern. The aim of this study was to investigate the isolation, genetic evolution, molecular characterization and epidemiological analysis of FPV strains among cats and dogs in China from 2019 to 2024.

View Article and Find Full Text PDF

First Report of Influenza D Virus in Dairy Cattle in Pakistan.

Viruses

November 2024

Department of Environmental and Global Health College of Public Health and Health Professions, University of Florida, Gainesville, FL 32610, USA.

Influenza D virus (IDV) is a newly emerged zoonotic virus increasingly reported worldwide. Cattle are considered the main reservoir of IDV, although it was first isolated from pigs. IDV infects multiple animal species and contributes to the bovine respiratory disease complex (BRDC).

View Article and Find Full Text PDF

One of the key surveillance strategies for the early detection of an African swine fever (ASF) incursion into a country is the sampling of wild or feral pig populations. In Australia, the remote northern regions are considered a risk pathway for ASF incursion due to the combination of high numbers of feral pigs and their close proximity to countries where ASF is present. These regions primarily consist of isolated arid rangelands with high average environmental temperatures.

View Article and Find Full Text PDF

Antimicrobial Resistance Genes and Clonal Relationships of Duck-Derived in Shandong Province, China in 2023.

Microorganisms

December 2024

Shandong Provincial Key Laboratory of Zoonoses, College of Animal Medicine, Shandong Agricultural University, Tai'an 271002, China.

is a major threat to both human and animal health. However, the diversity and antibiotic resistance of animal-derived and their association with human infections remain largely unexplored. In this study, strains were isolated, identified, and sequenced from dead embryos and cloacal swab samples obtained from 278 large-scale duck farms in 11 cities in Shandong Province.

View Article and Find Full Text PDF

Respiratory Pathogen Coinfection During Intersecting COVID-19 and Influenza Epidemics.

Pathogens

December 2024

National Key Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, 20 Dongdajie Road, Beijing 100071, China.

Respiratory pathogen coinfections pose significant challenges to global public health, particularly regarding the intersecting epidemics of COVID-19 and influenza. This study investigated the incidences of respiratory infectious pathogens in this unique context. We collected throat swab samples from 308 patients with a fever from outpatient and emergency departments at sentinel surveillance hospitals in Xiamen, southeast of China, between April and May 2023, testing for SARS-CoV-2 and 26 other respiratory pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!