The nucleofugality of chloride has been measured in solvent mixtures containing ionic liquids for the first time, allowing reactivity in these solvents to be put in context with molecular solvents. Using well-described electrofuges, solvolysis rate constants were determined in mixtures containing different proportions of ethanol and the ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide; the different solvent effects observed as the mixture changed could be explained using interactions of the ionic liquid with species along the reaction coordinate, determined using temperature dependent kinetic studies. The solvolysis data allowed determination of the nucleofugality of chloride in these mixtures, which varied with the proportion of salt in the reaction mixture, demonstrating quantitatively the importance of the amount of ionic liquid in the reaction mixture in determining reaction outcome. Nucleofugality data for chloride were determined in seven further ionic liquids, with the reactivity shown to vary over more than an order of magnitude. This outcome illustrates that the components of the ionic liquid are critical in determining reaction outcome. Overall, this work quantitatively extends the understanding of solvent effects in ionic liquids and demonstrates the potential for such information to be used to rationally select an ionic liquid to control reaction outcome.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.1c02043DOI Listing

Publication Analysis

Top Keywords

ionic liquid
20
ionic liquids
16
nucleofugality chloride
12
reaction outcome
12
effects ionic
8
ionic
8
solvent effects
8
reaction mixture
8
determining reaction
8
reaction
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!