Electrochemical performance of the layered compound CrPS for the usage as anode material in sodium-ion batteries (SIBs) was examined and exceptional reversible long-term capacity and capacity retention were found. After 300 cycles, an extraordinary reversible capacity of 687 mAh g at a current rate of 1 A g was achieved, while rate capability tests showed an excellent capacity retention of 100%. Detailed evaluation of the data evidence a change of the electrochemical reaction upon cycling leading to the striking long-term performance. Further investigations targeted the reaction mechanism of the first cycle by applying complementary techniques, i.e., powder X-ray diffraction (XRD), pair distribution function (PDF) analysis, X-ray absorption spectroscopy (XAS), and Na/P magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy. The results indicated an unexpectedly complex reaction pathway including formation of several intercalation compounds, depending on the amount of Na inserted at the early discharge states and subsequent conversion to NaS and strongly disordered metallic Cr at the completely discharged state. While XAS measurements suggest no further presence of intermediates after formation of Na intercalation compounds, several different phases are detected via MAS NMR upon continued discharging. Especially the data obtained from the MAS NMR investigations therefore point toward a very complex reaction pathway. Furthermore, solid electrolyte interphase (SEI) formation, resulting in the presence of NaF, was observed. After recharging the anode material, no structural long-range order occurred, but short-range order indeed resembled the local environment of the starting material, to a certain extent.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.1c14980DOI Listing

Publication Analysis

Top Keywords

anode material
12
material sodium-ion
8
sodium-ion batteries
8
capacity retention
8
complex reaction
8
reaction pathway
8
formation intercalation
8
intercalation compounds
8
mas nmr
8
long-term stable
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!