PIM-1/holey graphene oxide (GO) mixed matrix membranes (MMMs) have been prepared and their gas separation performance for CO/CH mixtures assessed. Nanopores have been created in the basal plane of gas-impermeable GO by chemical etching reactions, and the resulting holey flakes have been further chemically functionalized, either with octadecylamine (ODA) or with PIM-1 moieties, to aid their dispersion in PIM-1. It is found that nanopores barely promote gas transport through the graphene-like nanofiller for fresh membranes (tested right after preparation); however, the prepared hybrid PIM-1/holey GO membranes exhibit higher CO permeability and CO/CH selectivity than the pure polymer membrane 150 days after preparation and 13 and 15% higher CO permeability for filler contents of 0.1% of octadecylamine-functionalized holey GO and 1% of (PIM-1)-functionalized holey GO, respectively. The most significant improvement is observed for the mitigation of physical aging, as MMMs using 10% of (PIM-1)-functionalized holey GO nanofillers are capable of maintaining up to 70% of their initial CO permeability after 150 days, whereas only 53% is kept for pure PIM-1 after the same period. The gas permeability of the nanofiller has been rationalized with the aid of the Maxwell-Wagner-Sillars equation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.1c15640 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!