The reduced density of cardiac autonomic nerves plays an important role in malignant arrhythmia after myocardial infarction (MI). Previous studies have shown that there is an interaction between the brain and the heart, and fastigial nucleus electrostimulation (FNS) promotes central nerve regeneration. Whether and how it can promote cardiac nerve regeneration after MI and the underlying mechanisms remain unknown. This study investigated whether FNS promotes cardiac nerve regeneration and reduces malignant arrhythmia inducibility in a post-infarction rat model. Ninety-eight Wistar rats were randomly assigned to Sham control, MI (left anterior descending coronary artery ligation without FNS), FNS (MI plus FNS), and FNL (fastigial nucleus lesion plus FNS plus MI) groups. The frequency of malignant arrhythmia was significantly lower in the FNS group than in the MI and FNL groups. The density of cardiac autonomic nerves was less in the MI group than in the Sham group, which was promoted by FNS. The nerve growth factor (NGF) mRNA expression was downregulated in the MI group compared to the Sham group, which was significantly enhanced by FNS. The expression levels of norepinephrine (NE) and acetylcholine (ACh) were higher and lower respectively in the MI and FNL groups than in the Sham group. After FNS, NE concentration was reduced and Ach level was elevated compared to the MI group. These data suggested that FNS promoted the regeneration of cardiac autonomic nerves and reduced the incidence of malignant arrhythmias in MI rat model. The mechanisms might involve up-regulation of NGF mRNA expression, decrease of NE release and increase of ACh release.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.15521DOI Listing

Publication Analysis

Top Keywords

nerve regeneration
16
malignant arrhythmia
16
fastigial nucleus
12
cardiac nerve
12
rat model
12
cardiac autonomic
12
autonomic nerves
12
sham group
12
fns
11
nucleus electrostimulation
8

Similar Publications

Dementia Care Research and Psychosocial Factors.

Alzheimers Dement

December 2024

Westport, CT, USA.

Background: A 73-year-old female with a 3 year history of Alzheimer's disease was treated within the protocol of The Alzheimer's Autism and Cognitive Impairment Stem Cell Treatment Study (ACIST), an IRB approved clinical study registered with clinicaltrials.gov NCT03724136.

Method: The procedure consists of bone marrow aspiration, cell separation using an FDA cleared class 2 device, and intravenous and intranasal administration of the stem cell fraction.

View Article and Find Full Text PDF

Introduction: Motor recovery following nerve injury is dependent on time required for muscle reinnervation. This process is imperfect, however, and recovery is often incomplete. At the neuromuscular junction (NMJ), macrophage signaling aids muscle reinnervation.

View Article and Find Full Text PDF

After a peripheral nerve injury, Schwann cells (SCs), the myelinating glia of the peripheral nervous system, convert into repair cells that foster axonal regrowth, and then remyelinate or re-ensheath regenerated axons, thereby ensuring functional recovery. The efficiency of this mechanism depends however on the time needed for axons to regrow. Here, we show that ablation of histone deacetylase 8 (HDAC8) in SCs accelerates the regrowth of sensory axons and sensory function recovery.

View Article and Find Full Text PDF

Corrigendum to "Alginate/gum arabic-based biomimetic hydrogel enriched with immobilized nerve growth factor and carnosine improves diabetic wound regeneration" [Carbohydrate Polymers 321, (2023), 121179].

Carbohydr Polym

March 2025

Department of Pharmaceutical Biomaterials and Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran; Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Biomaterials Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran. Electronic address:

View Article and Find Full Text PDF

Decellularization of fish tissues for tissue engineering and regenerative medicine applications.

Regen Biomater

November 2024

Zhejiang Top-Medical Medical Dressing Co. Ltd, Wenzhou, Zhejiang 325025, China.

Decellularization is the process of obtaining acellular tissues with low immunogenic cellular components from animals or plants while maximizing the retention of the native extracellular matrix structure, mechanical integrity and bioactivity. The decellularized tissue obtained through the tissue decellularization technique retains the structure and bioactive components of its native tissue; it not only exhibits comparatively strong mechanical properties, low immunogenicity and good biocompatibility but also stimulates neovascularization at the implantation site and regulates the polarization process of recruited macrophages, thereby promoting the regeneration of damaged tissue. Consequently, many commercial products have been developed as promising therapeutic strategies for the treatment of different tissue defects and lesions, such as wounds, dura, bone and cartilage defects, nerve injuries, myocardial infarction, urethral strictures, corneal blindness and other orthopedic applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!