Regulation of glucose responsive protein (GRP) gene expression by insulin.

Cell Stress Chaperones

Department of Pathology, Division of Pathobiology and Molecular Medicine, University of Alabama at Birmingham, 1670 University Blvd., Volker Hall G019, Birmingham, AL, 35294-0019, USA.

Published: January 2022

While screening for insulin-induced genes, we identified two members of a family of stress-induced genes referred to as glucose-regulated proteins (GRPs). GRPs are members of the stress-responsive superfamily of genes which also includes heat shock proteins (HSPs). The GRP proteins are not normally heat-inducible, but are overproduced when cells are starved of glucose. The two major GRP proteins, GRP78 and GRP94, are highly conserved among vertebrates. We have found that physiological concentrations of insulin stimulate the transcription of GRP78 and GRP94 in rat H4IIE hepatoma cells. The regulation of GRP78 transcription was rapid, with the first induction within minutes, and a further induction after several hours, and both occurred in the presence of glucose. GRP78 transcription was more greatly induced by insulin in the presence of SB202190, a specific p38-MAPK inhibitor. Transcription of GRP94 was also induced, but only after several hours. Calcimycin (A23187) and anisomycin were used to induce endoplasmic reticulum (ER)/cellular stress, and both induced GRP78 and GRP94 transcription.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8821767PMC
http://dx.doi.org/10.1007/s12192-021-01243-zDOI Listing

Publication Analysis

Top Keywords

grp78 grp94
12
grp proteins
8
grp78 transcription
8
grp78
5
transcription
5
regulation glucose
4
glucose responsive
4
responsive protein
4
protein grp
4
grp gene
4

Similar Publications

Pentraxin 3 deficiency ameliorates streptozotocin-induced pancreatic toxicity via regulating ER stress and β-cell apoptosis.

Mol Cells

January 2025

Department of Pharmacology, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Republic of Korea; Senotherapy-based Metabolic Disease Control Research Center, Yeungnam University College of Medicine, 170 Hyeonchung-ro, Nam-gu, Daegu 42415, Republic of Korea. Electronic address:

The long pentraxin 3 (PTX3), a marker of inflammation, has been associated with cardiovascular disease, obesity, and metabolic syndrome. Recently, elevated serum PTX3 levels have been linked to type 2 diabetes in obese patients with nonalcoholic fatty liver disease. Diabetes mellitus is a metabolic syndrome characterized by hyperglycemia resulting from insufficient insulin secretion or action.

View Article and Find Full Text PDF

GRK2 mediates cisplatin-induced acute liver injury via the modulation of NOX4.

Cell Biol Toxicol

November 2024

Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Centre of Anti-Inflammatory and Immune Medicine, Center of Rheumatoid Arthritis of Anhui Medical University, Hefei, 230032, China.

Background: The present study investigated the function of G protein-coupled receptor kinase 2 (GRK2) in acute liver injury (ALI) by cisplatin, and investigated the protective effect of pharmacological inhibition of GRK2.

Methods: ALI models were generated in global adult hemizygous (ALI-Grk2) mice and wild-type (WT) mice. Liver biochemistry parameters and histopathology were used to evaluate the severity of ALI and the protective effect of pharmacological inhibition of GRK2.

View Article and Find Full Text PDF

Purpose: Tripartite motif-containing protein 13 (TRIM13) directly or indirectly participates in autophagy and apoptosis. However, it remains unclear whether TRIM13 participates in chronic obstructive pulmonary disease (COPD) progression. This study aimed to reveal the molecular mechanisms through which TRIM13 regulates alveolar epithelial cell injury in COPD to provide new molecular targets for COPD treatment.

View Article and Find Full Text PDF

Chlorpyrifos-oxon induced neuronal cell death via endoplasmic reticulum stress-triggered apoptosis pathways.

Toxicol In Vitro

December 2024

Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China; Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China. Electronic address:

Chlorpyrifos (CPF) is one of the organophosphorus pesticides widely used throughout the world. Epidemiological studies suggested a link between CPF exposure and neurologic disorders, while the molecular mechanisms remain inconclusive. In the present study, we investigated the impacts of chlorpyrifos-oxon (CPO), the major toxic CPF metabolite, on cell apoptosis, and explored possible mechanism associated with endoplasmic reticulum (ER) stress in SH-SY5Y cells.

View Article and Find Full Text PDF

Excessive alcohol exposure can cause neurobehavioral deficits and structural alterations in the brain. Emerging research evidence suggests that endoplasmic reticulum (ER) stress plays an important role in alcohol-induced neurotoxicity. Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an ER stress inducible protein and is responsible to maintain ER homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!