Endocrine-disrupting chemicals (EDCs) are widespread environmental chemicals that are often considered as risk factors with weak activity on the hormone-dependent process of pregnancy. However, the adverse effects of EDCs in the body of pregnant women were underestimated. The interaction between dynamic concentration of EDCs and endogenous hormones (EHs) on gestational age and delivery time remains unclear. To define a temporal interaction between the EDCs and EHs during pregnancy, comprehensive, unbiased, and quantitative analyses of 33 EDCs and 14 EHs were performed for a longitudinal cohort with 2317 pregnant women. We developed a machine learning model with the dynamic concentration information of EDCs and EHs to predict gestational age with high accuracy in the longitudinal cohort of pregnant women. The optimal combination of EHs and EDCs can identify when labor occurs (time to delivery within two and four weeks, AUROC of 0.82). Our results revealed that the bisphenols and phthalates are more potent than partial EHs for gestational age or delivery time. This study represents the use of machine learning methods for quantitative analysis of pregnancy-related EDCs and EHs for understanding the EDCs' mixture effect on pregnancy with potential clinical utilities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548981PMC
http://dx.doi.org/10.34133/2021/9873135DOI Listing

Publication Analysis

Top Keywords

gestational age
16
edcs ehs
16
machine learning
12
age delivery
12
delivery time
12
longitudinal cohort
12
pregnant women
12
endocrine-disrupting chemicals
8
edcs
8
dynamic concentration
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!